

MAS 3528E

Contents

Page	Section	Title
5	1.	Introduction
5	1.1.	Features
6	1.2.	System Application
7	1.3.	Application Details
8	2.	Functional Description
8	2.1.	Overview
8	2.2.	Architecture
8	2.3.	DSP Core
9	2.4.	Internal Program ROM and Firmware
9	2.5.	RAM and Registers
9	2.5.1.	Program Download Feature
9	2.6.	Clock Management
10	2.7.	Interfaces
10	2.7.1.	I ² C Control Interface
10	2.7.2.	S/PDIF-Input Interface
10	2.7.3.	S/PDIF-Output
10	2.7.4.	Serial Input Interface
10	2.7.4.1.	Multiline Serial Output
10	2.7.5.	Frame Synchronization
11	2.8.	Power-Supply Regions
11	2.9.	Functional Blocks and Operation
11	2.9.1.	Power-Up Sequence and Default Operation
12	2.9.2.	Input Switching
12	2.9.3.	Standard Selection and Decoding
12	2.9.4.	Dolby Digital Data Stream
12	2.9.5.	MPEG Layer-2 Data Stream
12	2.9.6.	PCM Audio Data
12	2.9.7.	Deemphasis
12	2.9.8.	Channel Expander
13	2.9.9.	Noise Generator
13	2.9.10.	Post Processing / Bass Management
13	2.9.10.1.	Downmix
13	2.9.10.2.	Digital Volume
13	2.9.10.3.	Bass Management
14	2.9.11.	Output Format Selection
15	2.9.12.	DTS / S/PDIF Loop-Through
15	2.9.13.	Output Sampling Rate
15	2.10.	System Interaction
15	2.10.1.	Minimum Required Interconnections
15	2.10.2.	Required Special Modes in the System
16	2.10.3.	Minimum System Set-Up

Contents, continued

Page	Section	Title
17	3.	Control Interface
17	3.1.	Start-Up Sequence
17	3.2.	I ² C Interface Access
17	3.2.1.	General
17	3.2.2.	I ² C Registers and Subaddresses
17	3.2.3.	Conventions for the Command Description
18	3.2.4.	The Internal Fixed Point Number Format
18	3.3.	I ² C Control Register (Subaddress 6A _{hex})
18	3.4.	I ² C Data Register (Subaddresses 68 _{hex} and 69 _{hex}) and the MAS 3528E DSP-Command Syntax
19	3.4.1.	Run and Freeze
20	3.4.2.	Read Register
20	3.4.3.	Write Register
20	3.4.4.	Read D0 Memory
20	3.4.5.	Short Read D0 Memory
21	3.4.6.	Read D1 Memory
21	3.4.7.	Short Read D1 Memory
21	3.4.8.	Write D0 Memory
21	3.4.9.	Short Write D0 Memory
21	3.4.10.	Write D1 Memory
22	3.4.11.	Short Write D1 Memory
22	3.4.12.	Default Read
23	3.5.	Registers
24	3.6.	Special Memory Locations and User Interface
24	3.6.1.	Status Interface for Decoding
32	3.6.2.	Control Interface for Decoding Operation
40	3.6.3.	Hybrid User Interface Cells
41	4.	Specifications
41	4.1.	Outline Dimensions
41	4.2.	Pin Connections and Short Descriptions
43	4.3.	Pin Descriptions
43	4.3.1.	Power Supply Pins
43	4.3.2.	Control Lines
43	4.3.3.	Parallel Interface Lines
43	4.3.4.	Clocking
43	4.3.5.	Serial Input Interface
44	4.3.6.	S/PDIF Input Interface
44	4.3.7.	S/PDIF Output Interface
44	4.3.8.	Serial Output Interface
44	4.3.9.	Miscellaneous
44	4.4.	Pin Configuration
45	4.5.	Internal Pin Circuits
46	4.6.	Electrical Characteristics
46	4.6.1.	Absolute Maximum Ratings
47	4.6.2.	Recommended Operating Conditions
47	4.6.2.1.	General Recommended Operating Conditions

Contents, continued

Page	Section	Title
47	4.6.2.2.	Reference Frequency Generation and Crystal Recommendations
47	4.6.2.3.	Input Levels at V _{DD} = 4.5 V5.5 V
48	4.6.3.	Characteristics
48	4.6.3.1.	General Characteristics
49	4.6.3.2.	I ² C Characteristics
50	4.6.3.3.	S/PDIF-Bus Input Characteristics
51	4.6.3.4.	S/PDIF-Bus Output Characteristics
52	4.6.3.5.	I ² S Bus Characteristics – Input
54	4.6.3.6.	I ² S Characteristics – Output
55	4.6.4.	Firmware Characteristics
60	5.	Data Sheet History

References

- 1. Digital Audio Compression (AC-3), ATSC Standard, Advances Television Systems Committee, James C. McKinney, Chariman, Dr. Robert Hopkins, Executive Director (Dec. 20, 1995)
- 2. Dolby Licensee Information Manual: Dolby Digital Consumer Decoder, Issue 3, 1999

License Notice

Dolby-B-NR, Dolby Digital, Dolby Pro Logic, and Dolby Surround Sound are trademarks of Dolby Laboratories.

Supply of this implementation of Dolby Technology does not convey a license nor imply a right under any patent, or any other industrial or intellectual property right of Dolby Laboratories, to use this implementation in any finished end-user or ready-to-use final product. Companies planning to use this implementation in products must obtain a license from Dolby Laboratories Licensing Corporation before designing such products.

Dolby Digital and MPEG-1 Layer-2 Audio Decoder

1. Introduction

The Micronas MAS 3528E is a single-chip Dolby Digital and MPEG-1 Layer-2 decoder. Together with the Surround Sound Processor DPL 4519G, it acts as a complete implementation of a Dolby Digital consumer decoder. In a television environment, these two integrated circuits are complemented by the Micronas Multistandard Sound Processor MSP 4450G which performs the standard TV sound decoding.

 Table 1–1: ICs used for the Dolby Digital System

 Solution

Туре	Description
MSP 4450G	Multistandard Sound Processor with 48 kHz processing
DPL 4519G	Sound Processor for digital and analog Surround Systems
MAS 3528E	Dolby Digital/MPEG-1 decoder

1.1. Features

- S/PDIF, IEC-958, IEC 61937, AES/EBU, EIA-J CP-340 receiver (2 multiplexed inputs)
- Two freely configurable multiplexed serial inputs
- Decoders for 5.1-channel Dolby Digital (AC-3) and MPEG-1 Layer-2
- Handling of PCM input format
- S/PDIF loop-through for DTS (Digital Theater System) and PCM formats
- Optional surround encoding (Lt, Rt) or straight downmixing to two channels (Lo, Ro)
- Multi-channel I²S output (four stereo data lines or one 8-channel line)
- Dynamic range compression
- Karaoke downmixing
- Delay for center (0...5 ms)
- Delay for surround (two channels, 0...15 ms)
- Bandpass-shaped/white-noise generator
- Bass management according to Dolby specification (output configuration 0, 1, 2, 3, and DVD)
- I²C-control

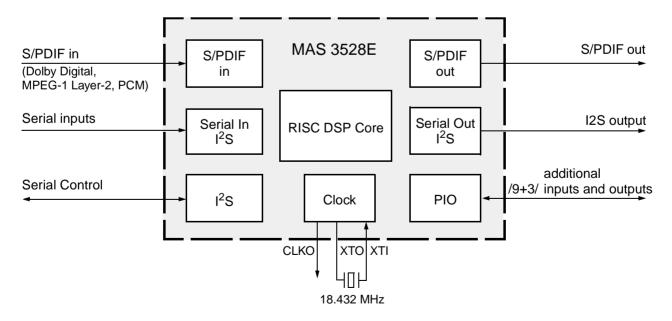


Fig. 1-1: Block diagram MAS 3528E

1.2. System Application

The Micronas Dolby Digital system solution consists of three dedicated integrated circuits:

- The MSP 4450G is the interface for all TV-sound and analog input signals. It performs the TV-audio demodulation including analog stereo, NICAM, and Wegener Panda decompression. It has four pairs of audio D/A-converters, two of them including sound control facilities, and one additional subwoofer D/Aconverter.
- The DPL 4519G adds the Dolby Surround Sound features and has three pairs of audio D/A-converters, two of them including sound control facilities, and one additional subwoofer D/A converter.
- The MAS 3528E performs the Dolby Digital or MPEG decoding and has additional functions that are necessary for the Dolby Digital system.

While the MSP 4450G is a stand-alone TV-sound solution, the combination with a DPL 4519G results in a high-end TV with Dolby Pro Logic functionality.

With the addition of the MAS 3528E, the TV provides full Dolby Digital/MPEG-1 capabilities.

A combination of the DPL 4519G with the MAS 3528E is a fully functional Dolby Digital integration for multimedia applications with a total of seven high-quality audio D/A-converters.

Fig. 1-2: Configuration of the Micronas Dolby Digital TV system solution.

1.3. Application Details

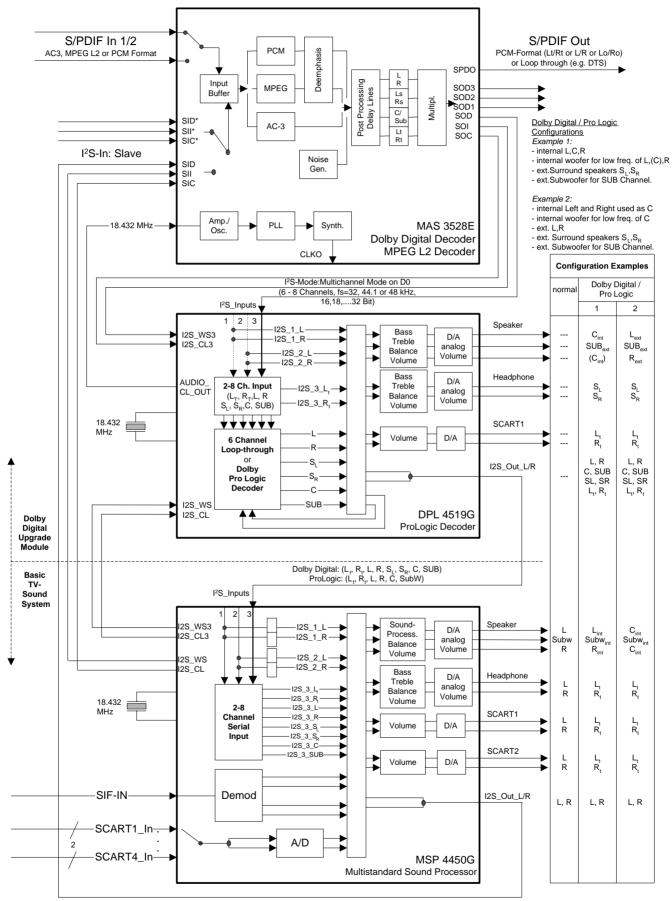


Fig. 1–3: Block diagram of a MAS 3528E in a television environment with all D/A-converters shown.

2. Functional Description

2.1. Overview

The MAS 3528E is intended for use in high-end consumer audio applications. It receives S/PDIF or serial data streams and decodes the Dolby Digital (AC-3), MPEG or PCM-encoded audio formats.

Due to the automatic format detection, no controller interaction is needed for the standard operation. On the other hand, the controller has full access to all vital information contained in the Dolby Digital bit stream. The choice of different output formats, as defined by Dolby, guarantees good adaption to various listening environments.

2.2. Architecture

The hardware of the MAS 3528E consists of a high performance RISC Digital Signal Processor (DSP) and appropriate interfaces. Fig. 2–1 shows a hardware overview of the IC; Fig. 2–2 on page 11 shows the functional aspects.

2.3. DSP Core

The internal processor is a dedicated audio DSP. All data input and output actions are based on a 'non cycle stealing' background DMA that does not cause any computational overhead.

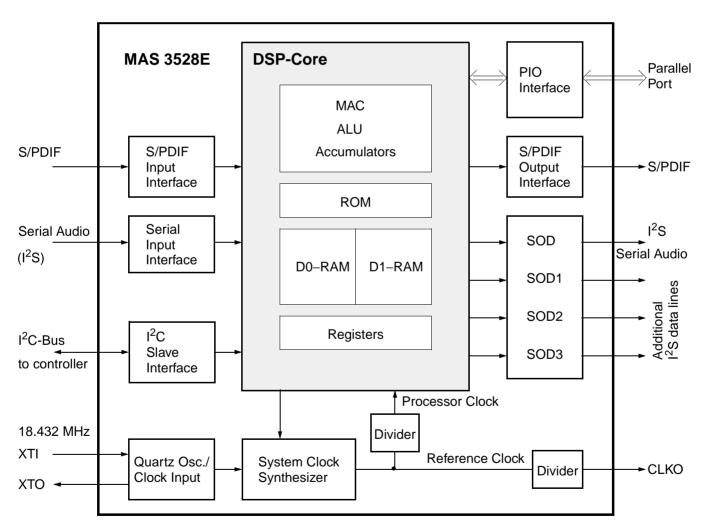


Fig. 2–1: The MAS 3528E architecture

2.4. Internal Program ROM and Firmware

The firmware implemented in the program ROM of the MAS 3528E provides Dolby Digital decoding including the required downmixing, output configurations and delay lines (part of an Implementation of Dolby Digital), MPEG-1 Layer-2 audio data decompression, handling of PCM-encoded audio, and loop-through of DTS-formats received via the S/PDIF-input.

For PCM and MPEG-signals, a deemphasis can be applied to achieve a flat frequency response as required by Dolby Pro Logic decoders.

On power-on, the DSP starts the firmware in an automatic standard detection mode with the S/PDIF-input selected. Therefore, only minimal controlling is necessary. In addition, the I²C-interface provides a set of I²C instructions that give access to internal DSP-registers and memory areas.

2.5. RAM and Registers

The DSP-core has access to two RAM-banks denoted D0 and D1. All RAM-addresses can be accessed in a 20-bit or a 16-bit mode via l^2C -bus. For more details, please refer to Section 3.4. on page 18.

For fast access of internal DSP-states, the processor core has an address space of 256 data registers (see Section 3.5. on page 23) which can be accessed via I^2C -bus.

2.5.1. Program Download Feature

The overall function of the MAS 3528E can be altered by downloading up to 4 kWords of program code into the internal RAM and executing this code instead of the ROM code. While using such alternate program code, no Dolby Digital or MPEG-decoding is possible.

All information concerning the download feature will be distributed together with the download code.

2.6. Clock Management

The MAS 3528E is driven by a single clock at a frequency of 18.432 MHz. The clock may either be provided from an external source to pin XTI or generated with a crystal. At pin XTO, the clock signal is available for other applications. The internal reference clock and processor clock are derived from the 18.432 MHz and synchronized to the audio sample frequency of the decompressed bit stream by a PLL. In case of Dolby Digital decoding, the clock frequency may be selected between a high and a low value by bit[16] in configuration memory cell UIC_Out_Clk_Scale (D0:13DF) – (see Table 3–7 on page 32).

The resulting processor clocks are given in Table 2–1.

At pin CLKO, a clock output can be provided e.g. for additional D/A-converters. The output frequency at CLKO is the reference clock divided by a factor as selected by bits[18:17] in D0:13DF. By default, CLKO is disabled..

 Table 2–1: Processor clock frequencies in dependence of bit[16] of UIC_Out_Clk_Scale (D0:13DF).

Format	f _s /kHz Processor Clock/M		Clock/MHz	
		bit[16] = 0	bit[16] = 1	
Dolby	48	61.44	73.728	
Digital	44.1	56.448	67.7376	
	32	40.96	49.152	
MPEG,	48	36.864		
PCM	44.1	33.8688		
	32	24.	.576	

Table 2–2: Reference clock frequencies in
dependence of bit[16] of
UIC_Out_Clk_Scale (D0:13DF).

Format	f _s /kHz	/kHz Reference Clock/MH		
		bit[16] = 0	bit[16] = 1	
Dolby	48	61.44	73.728	
Digital	44.1	56.448	67.7376	
	32	40.96	49.152	
MPEG,	48	73.728		
PCM	44.1	67.7376		
	32	49	.152	

2.7. Interfaces

The MAS 3528E uses an $\mathsf{I}^2\mathsf{C}\text{-interface}$ for control purposes.

Two kinds of digital audio inputs are provided: S/PDIF and a configurable serial input interface. Both interfaces can be used for digital audio data input in the PCM, AC-3 (Dolby Digital), or MPEG format.

For the audio output, a serial multiline interface can be used in different I^2S -like modes providing up to 8 audio channels. The S/PDIF-output can carry the PCM-audio information or can be used in a loop-through function.

2.7.1. I²C Control Interface

For controlling and program download purposes, a standard I^2C -interface is implemented. A detailed description of all functions can be found in Section 3. on page 17

2.7.2. S/PDIF-Input Interface

The S/PDIF interface is a one wire serial bus signal. In addition to the signal input pins SPDI/SPDI2, a reference pin SPREF is provided to support balanced signal sources or twisted pair transmission lines. The following features are supported:

- Fast synchronization on input signal (<50 ms)
- Burst-Mode support for Dolby Digital (AC-3) and MPEG-bitstreams
- Locking on 32, 44.1, 48 kHz sample frequencies
- Incoming first 20 channel status bits are mirrored in reg. 56_{hex} (see Table 3–5 on page 23)

2.7.3. S/PDIF-Output

At pin SPDIFOUT, the baseband audio is provided as an S/PDIF-signal.

Channel status bits in S/PDIF output (especially copyright, category code, and generation status) can be configured in D0:13EA (see Table 3–7 on page 32).

Alternatively, this output can mirror the unprocessed signal of the S/PDIF-input (Output_Conf: Register 2e). This loop-through is necessary for DTS (Digital Theater System) signals where no internal decoding action is performed.

2.7.4. Serial Input Interface

If the serial input interface carries Dolby Digital, MPEG Layer-2, or PCM, the MAS 3528E processes the data. The interface consists of the three pins: SIC, SII, and SID. For MPEG and Dolby Digital decoding operation, the SII pin must always be connected to V_{SS} , while for PCM-data, the interface acts as an I²S-type and SII is used as a word strobe. An example of an input signal format is shown in Fig. 4–17 on page 53. The data values are latched with the falling edge of the SIC signal. It is possible to use a word length of 16 or 32 bits. For controlling details, please refer to memory address D0:13D0 (I/O Control) and D0:13DF (Auxiliary Interface Control) in Table 3–7 on page 32.

If the MPEG or Dolby Digital signal was formatted (e.g. to 8-bit or 16-bit words) by the storing or transportation medium (PC, memory), the serial data must be sent "MSB first" as produced by the encoder.

2.7.4.1. Multiline Serial Output

The serial audio output interface of the MAS 3528E is a standard I²S-like interface consisting of four data lines SODx, the word strobe SOI, and the clock signal SOC. The output bitstream can either carry eight channels on one line (SOD) or two channels on each of four lines (SOD, SOD1, SOD2, SOD3). Furthermore, it is possible to choose between different interface configurations (with word strobe time offset and/or with inverted SOI-signal). The serial output generates 32 bits per audio sample, but only the first 20 bits will carry valid audio data. The 12 trailing bits are set to zero by default (see Fig. 4–19 on page 54).

The configuration of the output interface is done in D0:13D0 and D0:13DF (see Table 3–7 on page 32).

2.7.5. Frame Synchronization

For microprocessor interrupts, a frame synchronization output pin (SYNC) is provided.

After decoding a valid header, the SYNC pin level changes to High. Most of the status information (UIS cells in Table 3–6 on page 24) is updated now. To generate an edge for the controller, the level changes to Low during processing the next header. After having completed this, the SYNC pin level changes to High again. If the level is Low for more than 1 ms, no decoding is performed. Memory cell UIH_Last_error (D0:13FF) provides background information thereof.

Notes for Dolby Digital:

After first CRC is done, the SYNC pin level changes to High, all information for a frame is valid, and decoding is performed. The SYNC pin level changes to Low before new status information is written. Please take into account that UIS_dynrng, UIS_dynrng2, and UIS_karaokeflag are valid for the audio block only; the SYNC pin does not signalize their validity.

Notes for MPEG:

After processing CRC, the SYNC pin level changes to High, all information for a frame is valid, and decoding is performed. The SYNC pin level changes to Low before evaluating new header information.

2.8. Power-Supply Regions

The MAS 3528E has three power supply regions. The VDD/VSS-pin pair supplies all digital parts including the DSP-core. The XVDD/XVSS-pin pair is connected to the signal pin output buffers. The AVDD/AVSS-supply is for the clock oscillator, PLL-circuits, and system clock synthesizer.

2.9. Functional Blocks and Operation

A block diagram of the MAS 3528E functionality is shown in Fig. 2-2.

2.9.1. Power-Up Sequence and Default Operation

After applying the appropriate voltages to the three supply pins and releasing the reset signal, the circuit starts normal operation with the S/PDIF as the expected input and automatic standard recognition (Dolby Digital, MPEG, PCM). No further action is necessary for default operation or DTS loop-through.

A power-on reset can be issued at any time via pin POR.

When the input format is changed (e.g. from Dolby Digital to MPEG), the synchronization is lost and the audio output is muted. The automatic standard recognition then checks the new input format and, after successful recognition, resumes normal operation.

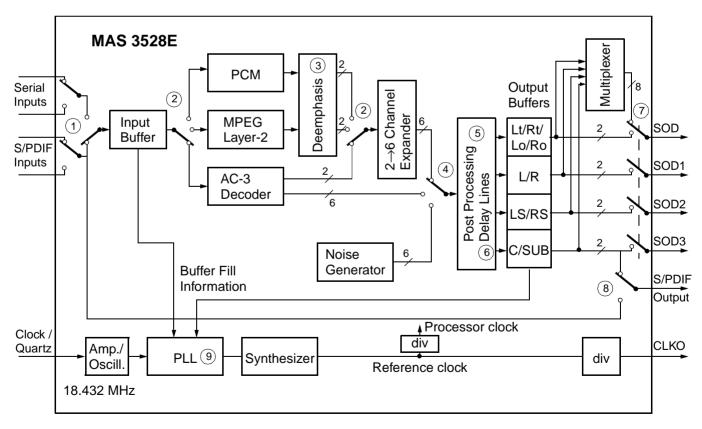


Fig. 2-2: Functionality of the MAS 3528E

2.9.2. Input Switching

Both input interfaces, the S/PDIF (default ① in Fig. 2– 2) or the serial input interface, may carry any of the three data formats: Dolby Digital (AC-3), MPEG Layer-2, or PCM. The filling status of the input buffer represents the data rate and therefore controls the system clock. The input interface can be selected in D0:13D0.

The DTS-format can only be received via the S/PDIF-interface for loop-through.

2.9.3. Standard Selection and Decoding

In the default mode, an automatic standard recognition (auto-detection) selects the decoding algorithm according to the data format at the S/PDIF-input. The detected standard is shown in the Global Operating Status (D0:13BB). The standard selection for the l^2S inputs can be selected manually in D0:13D0 ⁽²⁾.

2.9.4. Dolby Digital Data Stream

The digital input signal can either be an S/PDIF or an I^2S -source. In the Dolby Digital mode, the IC performs the following tasks:

- Data input with clock synchronization
- S/PDIF-channel selection (one of eight possible)
- Decoding of AC-3 bitstream elements
- Compression control for Dolby Digital signals (Do:13D7...13D9)
- Output mode control
- Dolby Bass Management
- Center and surround delays
- Dynamic compression and level adaption

If the signal source is the S/PDIF-input, the controller may select one of eight content channels depending on availability (D0:13BC). The respective service information is displayed in cell Bit Stream Mode (D0:13A2).

The bit stream elements contain all necessary information required to correctly handle the audio. All elements important for controller actions are displayed in the status memory (see Table 3–6 on page 24).

The MAS 3528E decodes all Dolby Digital formats from 1 to 5.1 audio channels. Accordingly, one to six of the output channels are used for the decoded audio. The output mode is selected in D0:13D6. An additional downmix pair can either be Dolby Surround encoded (Lt, Rt) or plain stereo (Lo, Ro; D0:13DE). If the Dolby Digital input only contains a stereo pair, the controller must recognize this (Dolby Surround Mode D0:13A6) and should activate an external Pro Logic decoder (e.g. in the DPL 4519G).

2.9.5. MPEG Layer-2 Data Stream

In the MPEG mode a valid MPEG-1 Layer-2 data signal is expected. The steps for decoding are

- Clock synchronization to data input
- S/PDIF-channel selection (one of eight possible)
- Side information extraction
- Audio data decompression
- Optional deemphasis
- Digital volume

If the signal source is the S/PDIF-input, the controller may select one of eight content channels depending on availability (D0:13BC).

2.9.6. PCM Audio Data

If the PCM-data are received via I^2 S-bus, the MAS 3528E expects a valid word strobe.

The PCM-bitstream does not contain information about the sample rate. Therefore, the controller must get this information from the signal source and set the sample rate in D0:13DB accordingly.

2.9.7. Deemphasis

For the PCM- and MPEG-formats a deemphasis can be applied to the signal ③ (D0:13E0). This is necessary because the possibly following Dolby Pro Logic encoding requires a flat audio frequency response. For MPEG-encoded audio and via S/PDIF transmitted PCM, this block is activated automatically. For proper operation of PCM signals via I²S, the controller has to determine whether the PCM signals have been preemphasized or not.

2.9.8. Channel Expander

The outputs of the PCM/MPEG-decoders consist of two channels each; the output of the Dolby Digital decoder may have any number between one and six (5.1) channels. To unify the output format between different modes the audio is always mapped to six channels (.

2.9.9. Noise Generator

A bandpass-shaped or white noise signal can be routed to any combination of the six main output channels ④. The required channel sequence must be done by the controller in D0:13D1.

2.9.10. Post Processing / Bass Management

The implemented post processing functions (5) can be applied to the following audio formats. They are

- Downmixing to Lo/Ro or surround sound encoding to Lt/Rt (D0:13DE) for Dolby Digital multichannel signals
- Mixing and digital filtering for the different Output and Bass configurations according to the Dolby Digital Licensee Information Manual (D0:13Dd5, 13D6, 13DA)
- Digital volume control (D0:13E1...13E8) for all audio formats
- Appropriate delay lines for center and surround channels (D0:13D2...13D4) for Dolby Digital multichannel signals

2.9.10.1. Downmix

For headphone and VCR-recordings, a downmixed output is provided that may be switched from Lt/Rt (surround encoded, default) to Lo/Ro (headphone encoded) (6).

The 6-channel output together with the downmix 6 is routed to the serial data output interface 7.

2.9.10.2. Digital Volume

The digital volume control provided is mainly intended for balancing purposes and initially set to 0 dB. Volume control, output configuration, and delays should be set by the controller according to the actual listening situation.

2.9.10.3. Bass Management

Generally, not all of the five loudspeakers in a Dolby Digital system can reproduce the full audio bandwith. Bass Managment allows redirecting low frequencies to loudspeakers which are capable of reproducing this frequency range. The MAS 3528E supports the following Bass Management modes:

Bass Management mode 0 (D0:13DA = 8)

Attenuation of -15 dB in the SUB channel should be compensated by a 15 dB gain in the D/A-converter.

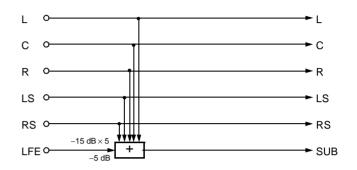


Fig. 2–3: Bass Management configuration 0

Bass Management mode 1 (D0:13DA = 9)

Attenuation of -15 dB in the SUB channel should be compensated by a 15 dB gain in the D/A-converter.

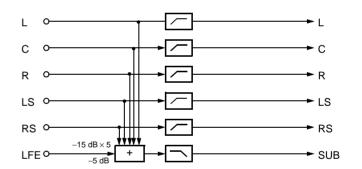
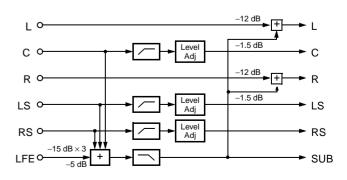
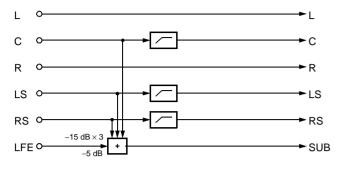
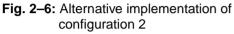




Fig. 2-4: Bass Management configuration 1


Bass Management mode 2 (D0:13DA = A_{hex})


Level adjustment is implemented with -12 db.

Bass Management mode 3 (D0:13DA = B_{hex})

Bass Management mode 4 (D0:13DA = C_{hex})

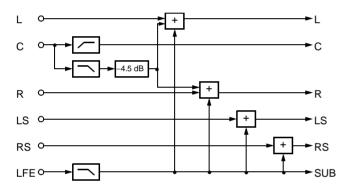
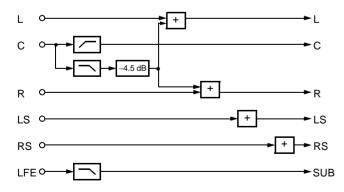
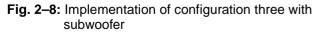




Fig. 2–7: Implementation of configuration 3

Bass Management mode 5 (D0:13DA = D_{hex})

In analog part of SUB should be add a +10 db gain

Bass Management mode 6 (D0:13DA = E_{hex})

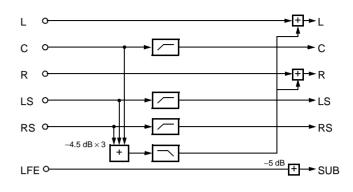


Fig. 2–9: Simplified Bass Management for Multichannel Source Products (I)

Bass Management mode 7 (D0:13DA = F_{hex})

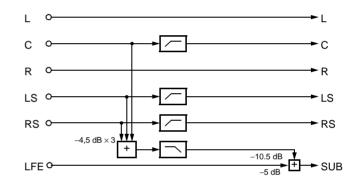


Fig. 2–10: Simplified Bass Management for Multichannel Source Products)II)

2.9.11. Output Format Selection

The output is an I²S-bus format with either eight audio channels on one line (default) or two audio channels on each of four lines (O, D0:13D0). If the 4x2-configuration is selected, the clock and word strobe lines SOC and SOI apply to all four data lines SOD...SOD3. Clock and word strobe signals can be configured to different standards (polarity, delay). The data word length is always 32 bits.

In the 1x8 format, the output data are in the following order:

L, LS, C, Lt/Lo, R, RS, Sub, Rt/Ro.

2.9.12.DTS / S/PDIF Loop-Through

An incoming DTS signal (via S/PDIF) will be reflected in GOS_Type (D0:13BB).

By default, a recognized DTS signal is looped-through. This means that the signal at S/PDIF input is routed to S/PDIF output without processing – regardless of bit 1 in register $2E_{hex}$.

This automatism can be disabled by setting bit 12 in register $2E_{hex}$ to "1". Now, the controller is to choose via bit 1 whether a PCM audio signal is output (in case of a DTS signal the output is muted) or the the input data is looped-through.

2.9.13. Output Sampling Rate

The internally generated system clock is derived from the filling status of the input data buffer by a PLL ⁽⁹⁾. This clock is synchronous to the original sampling rate and is used throughout the complete data processing. Except in the ambiguous case of PCM-data at the serial audio input where the original sampling rate must be defined (D0:13DB), no controller interaction is needed for clock operation.

The output sampling rate is 32 kHz, 44.1 kHz, or 48 kHz, depending on the source.

Since in the Micronas Dolby Digital TV sound solution all further signal processing is on a rate of 48 kHz, the input stage of the DPL 4519G performs the sample rate conversion if necessary.

2.10.System Interaction

2.10.1. Minimum Required Interconnections

The MAS 3528E requires the following connections for normal operation:

- Power supply with adequate blocking capacitors (VDD, VSS, AVDD, AVSS, XVDD, XVSS)
- Crystal with capacitors or clock input (XTI, XTO)
- I²C-bus and reset-line (I2CC, I2CD) and reset line (POR) for controlling
- S/PDIF-input (SPDI/SPDI2, SPREF) or serial/l²Sinput (SID, SIC, SII or SID*, SIC*, SII*). In the standard Micronas-solution, the l²S-signal comes from the MSP 4450G
- I²S-output (SOD, SOC, SOI). In the standard configuration, this signal is fed to the DPL 4519G.

Please refer to Fig. 4–20 on page 56 or to the application kit for details.

2.10.2. Required Special Modes in the System

The MAS 3528E interfaces require no configuration. The I²S outputs and inputs of the Dolby Pro Logic IC DPL 4519G and the MSP 4450G, however, must be configured to send/accept the 8-channel multiplexed digital PCM-data stream.

The DPL 4519G may generate up to seven analog signals (three pairs plus subwoofer). Further audio signals can be forwarded to the MSP 4450G for D/A-conversion.

Dolby Pro Logic encoded audio originating from the MSP 4450G (TV-sound) must be routed through the MAS 3528E to the DPL 4519G for further processing.

2.10.3. Minimum System Set-Up

The following I^2C -command sequence is necessary for the DPL 4519G:

- I²C-controlled reset
- Write MODUS Register (set I²S-input to slave mode)
- Write I2S_CONFIG (multi sample mode, 32 bits, clock to 8*32 bits)
- Set I2S3 Resorting Matrix to "left/right eight MAS 3528E". The signal pairs are now in the following order: Lt/Rt, L/R, SL/SR, C/Sub
- Select first I²S3-input pair as source for I²S Output (because of 8*32-bit mode all 4*2 channels will be looped through to the MSP 4450G) and set to transparent stereo

- Select one input pair as source for Loudspeaker Output (numbers 7...10 mean first...fourth pair)
- Select one input pair as source for Aux Output (numbers 7...10 mean first...fourth pair)
- Set volume control for Loudspeaker Output
- Set volume control for Aux Output

If a Multistandard Sound Processor is present in the system, similar set-up commands are required. For further details, please refer to the DPL 4519G or the MSP 4450G data sheets.

If both devices are used on the same I²C-bus, the device addresses must be set to different values by hardware means.

The D/A-conversion of audio signals may be freely appointed between the DPL 4519G and the MSP 4450G. For an example, please refer to Table 2–4.

Device	DPL 4519G			MSP 4450G			
$\begin{array}{l} \text{Register} \rightarrow \\ \text{Signal Pair} \downarrow \end{array}$	Loudsp. 00 08 _{hex}	Aux 00 09 _{hex}	SCART1 00 0A _{hex}	Loudsp. 00 08 _{hex}	Aux 00 09 _{hex}	SCART1 00 0A _{hex}	SCART2 00 41 _{hex}
Lt/Rt (Lo/Ro)	07 20 _{hex}	07 20 _{hex}	07 20 _{hex}	07 20 _{hex}	07 20 _{hex}	07 20 _{hex}	07 20 _{hex}
L/R	08 20 _{hex}	08 20 _{hex}	08 20 _{hex}	08 20 _{hex}	08 20 _{hex}	08 20 _{hex}	08 20 _{hex}
SL/SR	09 20 _{hex}	09 20 _{hex}	09 20 _{hex}	09 20 _{hex}	09 20 _{hex}	09 20 _{hex}	09 20 _{hex}
C/Sub	0A 20 _{hex} 1)	0A 20 _{hex} 1)	0A 20 _{hex} 1)	0A 20 _{hex} 1)	0A 20 _{hex} 1)	0A 20 _{hex} 1)	0A 20 _{hex} 1)
¹⁾ Use 0A 20 _{hex} for C/Sub output, 0A 00 _{hex} for Center signal on both outputs, 0A 10 _{hex} for Sub signal on both outputs							

Table 2–3: Output configuration matrix. All registers are at l^2 C-subaddress 12_{hex} of the respective device. Note that only one code per register applies.

Table 2–4: Example: In the DPL 4519G use both loudspeaker output channels for center, the auxiliary output for surround, the SCART1 output for Lt/Rt. In the MSP 4450G use the loudspeaker output for L/R, both auxiliary output channels for Sub and the SCART1 output for an additional Lt/Rt-signal.

Device	ce DPL 4519G			MSP 4450G			
$\begin{array}{l} \text{Register} \rightarrow \\ \text{Signal Pair} \downarrow \end{array}$	Loudsp. 00 08 _{hex}	Aux 00 09 _{hex}	SCART1 00 0Aa _{hex}	Loudsp. 00 08 _{hex}	Aux 00 09 _{hex}	SCART1 00 0A _{hex}	SCART2 00 41 _{hex}
Lt/Rt (Lo/Ro)			07 20 _{hex}			07 20 _{hex}	
L/R				08 20 _{hex}			
SL/SR		09 20 _{hex}					
C/Sub	0A 00 _{hex}				0A 10 _{hex}		

3. Control Interface

3.1. Start-Up Sequence

After power-up and a reset (see Section 3.3. on page 18), the IC is in its default state (see Table 3–7 on page 32). The controller has to initialize all memory cells for which a non-default setting is necessary.

3.2. I²C Interface Access

3.2.1. General

Control communication with the MAS 3528E is done via an I^2C slave interface. The device addresses are $3A_{hex}$ (write) and $3B_{hex}$ (read) as shown in Table 3–1.

I²C clock synchronization is used to slow down the interface if required.

Table 3–1: I²C device address

A7	A6	A5	A4	A3	A2	A1	W/R
0	0	1	1	1	0	1	0/1

3.2.2. I²C Registers and Subaddresses

The interface uses one level of subaddresses. The MAS 3528E interface has 3 subaddresses allocated for the corresponding I^2C -registers.

The address $6A_{hex}$ is used for basic control, i.e. reset and task select. The other addresses are used for data transfer from/to the MAS 3528E.

The I²C-control and data registers of the MAS 3528E are 16 bits wide, the MSB is denoted as bit [15]. Transmissions via I²C-bus have to take place in 16-bit words (two byte transfers, MSB sent first); thus for each register access two 8-bit data words must be sent/received via I²C-bus.

Table 3-2: Subaddresses

Sub- address	l ² C- Register	Function
68 _{hex}	data	Controller writes to MAS 3528E data register
69 _{hex}	data	Controller reads from MAS 3528E data register
6A _{hex}	control	Controller writes to MAS 3528E control register

3.2.3. Conventions for the Command Description

The description of the various controller commands uses the following formalism:

- Abbreviations used in the following descriptions:
 - a address
 - d data value
 - n count value
 - o offset value
 - r register number
 - x don't care
- A data value is split into 4-bit nibbles which are numbered zero-bound.
- Data values in nibbles are always shown in hexadecimal notation.
- A hexadecimal 20-bit number **d** is written, e.g. as $\mathbf{d} = 17C63_{hex}$, its five nibbles are $d0 = 3_{hex}$, $d1 = 6_{hex}$, $d2 = C_{hex}$, $d3 = 7_{hex}$, and $d4 = 1_{hex}$.

- Variables used in the following descriptions:

dev_write	3A _{hex}	device write
dev_read	3B _{hex}	device read
data_write	68 _{hex}	data register write
data_read	69 _{hex}	data register read
control	6A _{hex}	control register write

- Bus signals
 - S Start
 - P Stop
 - A ACK = Acknowledge
 - N NAK = Not acknowledge
- Symbols in the telegram examples
 - < Start Condition
 - > Stop Condition
 - dd data byte
 - xx ignore

All telegram numbers are hexadecimal, data originating from the MAS 3528E are shown in gray. Example:

<3A 68	dd dd>	write data to DSP
<3A 69	<3B dd dd>	read data from DSP

Fig. 3–1 shows I^2C bus protocols for read and write operations of the interface; the read operation requires an extra start condition and repetition of the chip address with the read command ($3B_{hex}$). Fields with signals/data originating from the MAS 3528E are marked by a gray background. Note that in some cases, the data reading process must be concluded by a NAK condition.

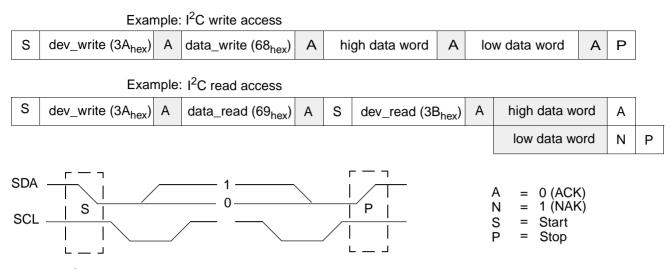


Fig. 3–1: I²C bus protocol for the MAS 3528E (MSB first; data must be stable while clock is high)

3.2.4. The Internal Fixed Point Number Format

In the following sections, two number representations are used: The fixed point notation 'v' and the 2's complement number notation 'r'.

The conversion between the two forms of notation is easily done (see the following equations).

r = v*524288.0+0.5; (−1.0 ≤ v < 1.0)	(EQ 1)
--------------------------------------	--------

v = r/524288.0; (-524288 < r < 524287) (EQ 2)

3.3. I²C Control Register (Subaddress 6A_{hex})

S dev_write A control A d3,d2 A d1,d0 A P

The I^2C control register is a write-only register. Its main purpose is the software reset of the MAS 3528E. The software reset is done by writing a 16-bit word to the MAS 3528E with bit 8 set. The four least significant bits are reserved for task selection. The task selection is only useful in combination with download software. In standard Dolby Digital/MPEG-decoding, these bits must always be set to 0.

Table 3-3: Control register bit assignment1)

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
x	x	x	x	x	x	x	R	0	0	0	0	Т3	T2	T1	т0

1) x = don't care, R = reset, T3...T0 0 task selection

3.4. I²C Data Register (Subaddresses 68_{hex} and 69_{hex}) and the MAS 3528E DSP-Command Syntax

The DSP-core of the MAS 3528E has two RAM-banks denoted D0 and D1. The word size is 20 bits. All RAM-addresses can be accessed in a 20-bit or a 16-bit mode via I²C-bus. For fast access of internal DSP-states, the processor core also has an address space of 256 data registers. All register and RAM-addresses are given in hexadecimal notation.

The control of the DSP in the MAS 3528E is done via the I²C data register by using a special command syntax. These commands allow the controller to access the DSP-registers and RAM-cells and thus monitor internal states, set the parameters for the DSP-firmware, control the hardware, and even provide a download of alternative software modules.

The DSP-commands consist of a "Code" which is sent to I^2C -data register together with additional parameters.

S	dev_write	А	data_write	А	Code,	А	,	А	

The MAS 3528E firmware scans the I²C interface periodically and checks for pending or new commands. The commands are then executed by the DSP during its normal operation without any loss or interruption of the incoming data or outgoing audio data stream. However, due to some time critical firmware parts, a certain latency time for the response has to be expected. The theoretical worst case response time does not exceed 4 ms. However, the typical response time is less than 0.5 ms. Table 3–4 on page 19 shows the basic controller commands that are available by the MAS 3528E.

ī

Code (hex)	Command	Function
0 3	Run	Start execution of an internal program. <i>Run</i> with start address 0 _{hex} means freeze the operating system
А	Read from register	Controller reads an internal register of the MAS 3528E.
В	Write to register	Controller writes an internal register of the MAS 3528E.
С	Read D0 memory	Controller reads a block of the DSP memory.
D	Read D1 memory	Controller reads a block of the DSP memory.
E	Write D0 memory	Controller writes a block of the DSP memory.
F	Write D1 memory	Controller writes a block of the DSP memory.

Table 3-4: Basic controller	command codes
-----------------------------	---------------

Table 3–4 gives an overview of the different commands which the DSP-core may receive. The "Code" is always the first data nibble transmitted after the "data_write" byte. A second auxiliary code nibble is used for the short memory access commands.

Because of the 16-bit width of the I^2C -data register, all actions always transmit telegrams with multiples of 16 data bits.

3.4.1. Run and Freeze

S	dev write	Δ	data_write	Δ	a3 a2	Δ	a1 a0	Δ	Р
3	uev_write	A	uala_white	А	as,az	А	a1,a0	A	Г

The *Run* command causes the start of a program part at address $\mathbf{a} = (a3,a2,a1,a0)$. Since nibble a3 is also the command code (see Table 3–4), it is restricted to values between 0 and 3.

If the start address is $1000_{hex} \le a < 1FFF_{hex}$ and the respective RAM area has been configured as program RAM (see Table 3–5 on page 23), the MAS 3528E continues execution with a custom program already downloaded to this area (see Section 2.5.1. on page 9).

Example 1: Start program execution at address 345_{hex}:

<3A 68 03 45>

Example 2: Start execution of a downloaded code at address 1000_{hex} :

<3A 68 10 00>

Freeze is a special run command with start address 0. It suspends all normal program execution. The operating system will enter an idle loop so that all registers and memory cells can be watched. This state is useful for operations like downloading code or contents of memory cells because the internal program cannot overwrite these values. This freezing will be required if alternative software is downloaded into the internal RAM of the MAS 3528E (see Section 2.5.1. on page 9).

Freeze has the following I²C protocol:

<3A 68 00 00>

The entry point of the default software will be accessed automatically. Thus issuing a *Run* or *Freeze* command is only necessary for starting downloaded software or special program modules which are not part of the standard set.

3.4.2. Read Register

1) se	1) send command													
S	dev_write	dev_write A data_write A \$a,r1 A r0,\$							\$0	А	Ρ			
2) get register value														
S	dev_write	Α	dat	data_read			S	dev	dev_read					
		x,	x	A x,o		d4	А	d3,	d2	А	d1,	,d0	Ν	Ρ

The MAS 3528E has an address space of 256 DSPregisters. Some of the registers ($\mathbf{r} = r1,r0$ in the figure above) are direct control inputs for various hardware blocks, others control the internal program flow. In Section 3.5. on page 23, the registers of interest with respect to the Dolby Digital/MPEG-decoding firmware are described in detail. In contrast to memory cells, registers cannot be accessed as a block but must always be addressed individually.

Example:

Read the content of register (2E_{hex}):

<3A	68	A2 E0>	define register
<3A	69	<3B xx xd dd dd>	and read

3.4.3. Write Register

S	dev_write	А	data_write	A \$b,r1		Α	r0,d4	А	
					d3,d2	Α	d1,d0	Α	Ρ

The controller writes the 20-bit value $(\mathbf{d} = d4, d3, d2, d1, d0)$ into the MAS 3528E register $(\mathbf{r} = r1, r0)$. A list of registers is given in Section 3.5. on page 23

Example: Disable automatic S/PDIF loop-through for DTS by writing the value 1000_{hex} into the register with the number $2E_{hex}$:

<3A 68 B2 E0 10 00>

3.4.4. Read D0 Memory

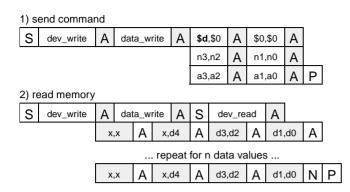
The MAS 3528E has 2 memory areas called D0 and D1. Both areas have different read and write commands.

1) send command S dev write А data write А **\$c**,\$0 А \$0,\$0 А n3,n2 A n1,n0 А a3,a2 a1,a0 А Р A 2) read memory S dev_write А data_write А S dev read А d3,d2 d1,d0 x,x А x,d4 А А А ... repeat for n data values ... А x,d4 A d3,d2 A d1,d0 N P x.x

The *Read D0 Memory* command gives the controller access to all 20 bits of D0-memory cells of the MAS 3528E. The telegram to read three words starting at location $D0:100_{hex}$ is

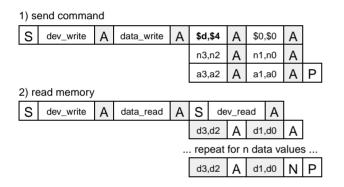
<3A 68 C0 00 00 03 01 00> <3A 69 <3B xx xd dd dd xx xd dd dd xx xd dd dd>

3.4.5. Short Read D0 Memory


Because most cells in the Dolby Digital user interface are only 16 bits wide, it is faster and more convenient to access the memory locations with a special 16-bit mode for reading:

1) send command

S	dev_write	А	data_write	Α	\$c,	\$4	А	\$0	,\$0	А		
					n3,	n2	A n1		n1,n0			
					a3,	a2	А	a1,a0		А	Ρ	
2) read memory												
S	dev_write	А	data_read	А	S dev_re		v_re	ad	А			
					d3,d2 A			d1,d0		А		
	repeat for n data values											
					d3,	d2	А	d1	,d0	Ν	Ρ	


This command is similar to the normal 20-bit read command and uses the same command codes C_{hex} , however, this nibble is followed by a 4_{hex} rather than a 0_{hex} .

3.4.6. Read D1 Memory

The *Read D1 Memory* command is provided to get information from D1 memory cells of the MAS 3528E.

3.4.7. Short Read D1 Memory

The Short Read D1 Memory command works similarly to the Read D1 Memory command but with the code D_{hex} followed by a 4_{hex} .

Example: Read 16 bits of D1:123 has the following I²C protocol:

<3A 68	D4 00	read 16 bits from D1
	00 01	one word to be read
	01 23>	start address
<3A 69	<3B dd dd>	start reading

3.4.8. Write D0 Memory

									-
S	dev_write	А	data_write	А	\$e ,\$0	А	\$0,\$0	А	
					n3,n2	А	n1,n0	А	
					a3,a2	А	a1,a0	А	
					0,0	А	0,d4	А	
					d3,d2	А	d1,d0	А	
					repeat f	or n	data va	ues	
					0,0	А	0,d4	А	
					d3,d2	Α	d1,d0	А	Ρ

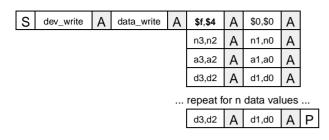
With the *Write D0 Memory* command n 20-bit memory cells in D0 can be initialized with new data.

Example: Write 80234_{hex} to D0:FFB_{hex} has the following I²C protocol:

<3A	68	ΕO	00	write D0 memory
		00	01	1 word to write
		0F	Fb	start address FFB _{hex}
		00	08	value = 80234_{hex}
		02	34>	TOX .

3.4.9. Short Write D0 Memory

S	dev_write	А	data_write	А	\$e,\$4	А	\$0,\$0	А	
					n3,n2	А	n1,n0	А	
					a3,a2	А	a1,a0	А	
					d3,d2	А	d1,d0	А	
					repeat f	or n	data val	ues	
					d3,d2	А	d1,d0	А	Ρ


For faster access, only the lower 16 bits of each memory cell are accessed. The four MSBs of the cell are cleared. The code combination is $E4_{hex}$.

3.4.10.Write D1 Memory

				-		-			
S	dev_write	А	data_write	А	\$f ,\$0	А	\$0,\$0	А	
					n3,n2	А	n1,n0	А	
					a3,a2	А	a1,a0	А	
					0,0	А	0,d4	А	
					d3,d2	А	d1,d0	А	
					repeat f	or n	data val	ues	
					0,0	А	0,d4	А	
					d3,d2	Α	d1,d0	А	Ρ

For further details, see the Write D0 Memory command.

3.4.11.Short Write D1 Memory

Only the 16 lower bits of each memory cell are written, the upper four bits are cleared.

3.4.12. Default Read

The *Default Read* command is the fastest way to get information from the MAS 3528E. Executing the *Default Read* in a polling loop can be used to detect a special state during decoding.

S	dev_write	А	data_read	А	S	device_read		А			
						d3,d2	d1,	d0	Ν	Ρ	

The *Default Read* command immediately returns the lower 16 bit content of a specific RAM location as defined by the pointer D0:FFB_{hex}. The pointer must be loaded before the first *Default Read* action occurs. If the MSB of the pointer is set, it points to a memory location in D1 rather than to one in D0.

Example: For watching D1:123, the pointer D0:FFB must be loaded with 8123_{hex}:

<3A	68	ΕO	00	write to D0 memory
	00	01		one word to write
	0F	Fb		start address FFB
	00	08		value = 8 _{hex}
	01	23>	>	0123 _{hex}

Now the *Default Read* commands can be issued as often as desired:

<3A 69 <3B	Default Read command
dd dd>	16 bit content of the
	address as defined by the pointer
<3A 69 <3B dd dd>	and do it again

3.5. Registers

In Table 3–5, the internal registers that are useful for controlling the MAS 3528E are listed. They are accessible by Read/Write Register I^2C commands (see Section 3.4.2. and Section 3.4.3. on page 20).

Note: Registers not given in this table must not be written.

Table 3–5: Command Register Table

Register Address (hex)	R/W	Function		Default (hex)	Name
2E	R/W	Loop-thro	ugh and Sync Pin Controlling	00000	Output_Conf
		bit[12]	 automatic active loop-through if DTS is recognized or the input format at S/PDIF_in cannot be determined (default) bit[1] controls loop-through 		
		bit[11:2]	reserved: do not change!		
		bit[1]	0: normal operation1: connect SPDI_in to SPDIF OUT (loop-through)		
		bit[0]	sync bit (will be automatically detected and set by internal software)		
56	R	Incoming	S/PDIF Channel Status Bits		SPIOCS
		bit[19:0]	mirrors first 20 channel status bits		

3.6. Special Memory Locations and User Interface

Operation of the DSP and the interfaces can be observed and controlled via the memory locations of the user interface. These memory cells are located at the high end of the D0-RAM.

Status cells are written by the DSP and read by the controller, configuration cells are written by the controller and read by the DSP, hybrid cells can be written and read by either side.

Note: Memory addresses not given in this table must not be accessed.

3.6.1. Status Interface for Decoding

The following table contains the memory locations of the firmware status information. Addresses are hexadecimal, memory cell content is binary when written without indicator and hexadecimal when written with a hex-suffix.

Memory Address (hex)	Function Mode	Name
D0:13A0	AC-3 Sample Rate Codes (fscod)Dolby Digital(Table 5.1 of ATSC Spec. A/52)	UIS_FSCOD
	bit[1:0] 00 48 kHz 01 44.1 kHz 10 32 kHz 11 not detected (default)	
	AC-3 sample rate as included in the bit stream.	
D0:13A1	Bit Stream Identification (bsid)Dolby Digital(Section 5.4.2.1 of ATSC Spec. A/52)	UIS_BSID
	bit[4:0] 00 _{hex} 1f _{hex} current bsid value	
	Bit streams that have a bsid higher than the decoder's version number may be incompatible. In this case, the decoding is inhibited. The version number for the implemented firmware is 8.	
D0:13A2	Bit Stream Mode (bsmod)Dolby Digital(Table 5.2 of ATSC Spec. A/52)	UIS_BSMOD
	bit[2:0]000main audio service: complete main (CM)001main audio service: music and effects (ME)010associated service: visually impaired (VI)011associated service: hearing impaired (HI)100associated service: dialogue (D)101associated service: commentary (C)110associated service: emergency (E)111acmod = 001, associated service: voice over (VO)111acmod = 010-111, main audio service: karaoke	
	This information is valid after selecting (D0:13D0) an available (D0:13BC) channel (data stream) from the S/PDIF-input. Prior to this, the bsmod can be directly derived from the PC-preambles of the S/PDIF-data (D0:13BD13C4)	

Memory Address (hex)	Function				Mode	Name
D0:13A3		g Mode (acmod) ATSC Spec. A/52)			Dolby Digital	UIS_ACMOD
	0 0 1 1 1 1	110 2/2 111 3/2	bsmod != '111' Ch1, Ch2 C L, R L, C, R L, C, R L, C, R, S L, C, R, S L, R, SL, SR L, C, R, SL, SR	Voice Over (\ L, R L, M, R L, R, V1 L, M, R, V1 L, R, V1, V2 L, M, R, V1, V	/O)	
	For user inform	mation: indicates	the applied main	channel.		
D0:13A4		evel (cmixlev) ATSC Spec. A/52)	1		Dolby Digital	UIS_CLEV
	0	01 0.595 10 0.500 11 reser nomin	7 (-3.0 dB) 5 (-4.5 dB) 0 (-6.0 dB) ved (-6.0 dB), nal downmix leve ect to left and righ		h	
	Used in the in	nternal algorithm.				
D0:13A5		x Level (surmixle ATSC Spec. A/52)			Dolby Digital	UIS_SLEV
	0	01 0.500 10 0 11 reser	′ (–3.0 dB)) (–6.0 dB) ved (–6.0 dB), nal downmix leve	l of surround (channels	
	Used in the in	nternal algorithm.				
D0:13A6		und Mode (dsurn ATSC Spec. A/52)			Dolby Digital	UIS_DSURMOD
	0	01 not D 10 Dolby	dicated olby Surround en v Surround encoo ved (not indicate	ded		
		e audio is Dolby S Logic decoder (e				
D0:13A7		CY Effects Chan 2.7 of ATSC Spec.			Dolby Digital	UIS_LFEON
	bit[0] 0 1					
	The user may the availability	v want to choose a v of the LFE.	a different output	configuration	depending on	

Memory Address (hex)	Function		Mode	Name
D0:13A8	Dialogue Nomalization (c (Section 5.4.2.8 of ATSC S		Dolby Digital	UIS_DIALNORM
	1F _{hex} 1	iverage dialog level –1 dB–31 dB b 00% digital eserved	elow	
	Used in the internal algorit	hm.		
D0:13AA	Language Code (langcod (Sections 5.4.2.11 and 5.4		Dolby Digital	UIS_LANGCOD
	bit[15:0] FFFF _{hex} la	angcode = 0 (langcod nonexistent ir	n stream)	
	bit[7:0] la	angcod		
	The controller may check a language.	all S/PDIF-data streams (channels)	for the desired	
D0:13AB	Mixing Level and Room T (audprodie, mixlevel, roo (Sections 5.4.2.13, 5.4.2.1		Dolby Digital	UIS_MIXLEVEL_ ROOMTYP
		udprodie = 0 (mixlevel, roomtyp no lata stream)	nexistent in	
	bit[6:2] n	nixlevel		
	bit[1:0] r	oomtyp		
	For user information.			
D0:13AC	Dialogue Nomalization 2 (dialnorm2) (Section 5.4.2.16 of ATSC		Dolby Digital	UIS_DIALNORM2
		average dialog level –1dB–31dB below 100% digital reserved		
	Used in the internal algorit			
	-		Delles Divited	
D0:13AE	Language Code 2 for Ch2 Dual Mono Mode 1+1 (lar (Section 5.4.2.19 and 20 o	ngcod2e, langcod2)	Dolby Digital	UIS_LANGCOD2
	bit[15:0] FFFF _{hex} la	angcod2e = 0 (langcod2 nonexisten	it in stream)	
	bit[7:0] la	angcod2		
	Used in the internal algorit	hm.		
D0:13AF	Mixing Level and Room T Dual Mono Mode 1+1 (au (Section 5.4.2.21, 22 and 2	UIS_MIXLEVEL2_ ROOMTYP2		
		audprodi2e = 0 (mixlevel2, roomtyp2 n stream)	2 nonexistent	
	bit[6:2] n	nixlevel2		
	bit[1:0] r	oomtyp2		
	For user information.			

Memory Address (hex)	Function			Mode	Name
D0:13B0		Bit (copyrig 4.2.24of ATS	htb) C Spec. A/52)	Dolby Digital	UIS_COPYRIGHT B
	bit[0]	0 1	not protected protected by copyright		
D0:13B1		t Stream (o 4.2.25 of ATS	r igbs) SC Spec. A/52)	Dolby Digital	UIS_ORIGBS
	bit[0]	0 1	copy of a bit stream original bit stream		
D0:13B2	Time Code (Section 5.4		C Spec. A/52)	Dolby Digital	UIS_TIMECOD1
	bit[15:0]	FFFF _{hex}	timecod1e = 0 (time code 1	nonexistent)	
	bit[13:0]		time code 1(first half)		
	bit[13:9]		time in hours (023 valid)		
	bit[8:3]		time in minutes (059 valid)		
	bit[2:0]		time in 8-second increments	(0 = 0 seconds) (1 = 8 seconds)	
				: (7 = 56 seconds)	
	For externa	l synchroniz	ation purposes.		
D0:13B3	Time Code (Section 5.4		C Spec. A/52)	Dolby Digital	UIS_TIMECOD2
	bit[15:0]	FFFF _{hex}	timecod2e = 0 (time code 2	nonexistent)	
	bit[13:0]		time code 2 (second half)		
	bit[13:11]		time in 8-second increments	, see time code 1	
	bit[10:6]		time in frames (029 valid)		
	bit[5:0]		time in 1/6 frames		
	For externa	l synchroniz	ation purposes.		
D0:13B4			Word (dynrnge, dynrng) 4.3.4 of ATSC Spec. A/52)	Dolby Digital	UIS_DYNRNG
	bit[15:0]	FFFF _{hex}	dynrnge = 0 (dynrng nonexis	stent in stream)	
	bit[7:0]		current dynrng value		
	Used in the	internal algo	orithm.		
D0:13B5	dual mono	mode (dyn	Word 2 for Ch2 in arng2e, dynrng2) I.3.6 of ATSC Spec. A/52)	Dolby Digital	UIS_DYNRNG2
	bit[15:0]	FFFF _{hex}	dynrng2e = 0 (dynrng2 none	existent in stream)	
	bit[7:0]		current dynrng value		
	Used in the	internal algo	orithm.		

Memory Address (hex)	Function		Mode	Name
D0:13B6	Karaoke F	lag	Dolby Digital	UIS_
	bit[0]	0 1	no Karaoke info in bit stream Karaoke info in bit stream	KARAOKEFLAG
D0:13B7	Frame Co	unt	Dolby Digital, MPEG	UIS_FRAME_
	bit[19:0]		counts 0, 1, 2, 3, 4,, 1048575 (= FFFFF _{hex}), 1,	COUNTER
D0:13B8	MPEG Hea	ader Bits 1		UIS_MPEG_ HEADER
	bit[19]		ID (must be 1 for MPEG-1)	
	bit[18:17]	00 01 10 11	Layer reserved Layer 3 Layer 2 Layer 1	
	bit[16]	0 1	Protection CRC no CRC	
	bit[15:12] bit[11:10]	0 _{hex} 1 2 3 4 5 6 7 8 9 a b c d e f 00 01 10 11	bit rate (see table in IEC 11172-3, Layer 2) free 32 48 56 64 80 96 112 128 160 192 224 256 320 384 forbidden sampling frequency (MPEG-1 Layer-2) 44.1 kHz 48 kHz 32 kHz reserved	

Memory Address (hex)	Function		Mode	Name
D0:13B8 (continued)	bit[9]		padding bit	
(continued)	bit[8]		private bit	
	bit[7:6]	00 01 10 11	Mode stereo joint stereo dual channel reserved	
	bit[5]	0 1	Joint Stereo Mode Extension ms_stereo off on	
	bit[4]	0 1	Joint Stereo Mode Extension Intensity Stereo off on	
	bit[3]	0 1	Copyright not protected protected	
	bit[2]	0 1	Original/Copy copy original	
	bit[1:0]	00 01 10 11	Emphasis none 50/15 µs reserved CCITT J.17	
D0:13B9	MPEG Sta	itus	MPEG	UIS_MPEG_
	bit[5]	0 1	mono stereo	STATUS
	bit[4]	1	CRC error	
	bit[3:2]	>0	other decoding error (not enough data)	
	bit[1:0]	>0	header error	

Memory Address (hex)	Function			Mode	Name
D0:13BB	Global Op	eration Statu	s (GOS)	S/PDIF-Input	UIS_GOS
	bit[7:5]	GOS_Type 0 1 2 3 46 7	GOS_NODEC, not decodable GOS_PCM_WARN, channel status GOS_DATA, data type GOS_PCM reserved GOS_I2S	s not plausible	
	bit[4:1]	Appl_Type 0 1 2 3 4 5 15	AC-3 MPEG Layer-2 PCM time code noise generator DTS unknown		
	bit[0]	0 1	unsynchronized (default) valid bit stream detected		
		ct input data ty	ne result of the decoding with the para pe (D0:13D0) is selected, the input o		
		ded audio, but	flag is set when the S/PDIF-channel valid synchronization headers (Dolb		
D0:13BC	Bit Strean	n Information		S/PDIF-Input	UIS_DSI
	each bit:	1 0	channel available channel not available		
	bit[7]		bit stream number 7		
	 bit[0]		bit stream number 0		
	Available b	oit streams (ch	annels) in the S/PDIF-data.		

Memory Address (hex)	Function			Mode	Name
D0:13BD			t ed Data Stream (burst_info) 3 of ATSC Spec. A/52)	S/PDIF-Input	UIS_PC <i>, i = 07</i>
D0:13C4	bit[15:13]	0 _{hex} 7 _{hex}	channel number (data_stream_nu	mber)	
	bit[12:8]		data_type_dependent, see below		
	bit[7]	0 1	error flag (error_flag) data may be valid data burst may contain errors		
	bit[6:5]		reserved		
	bit[4:0]	00 _{hex} 01 _{hex} 02 _{hex} 03 _{hex} 04 _{hex} 05 _{hex} 06 _{hex} 07 _{hex} 08 _{hex} 09 _{hex} 08 _{hex} D _{hes} 0E _{hex} 1F _{he}		ithout extension	
	This memo the selecte				
	Meaning of Field data_type_dependent Dolby Digital				
	<u>AC-3:</u> (Sec	tion 4.7 of Anr	nex B of ATSC Spec. A/52)		
	bit[12,11]	00	reserved, shall be '00'		
	bit[10:8]	01 _{hex} 02 _{hex} 03 _{hex} 1F _{he}	value of bsmod as described in D0: _x reserved	13A2:	
D0:13C7	S/PDIF Sta	atus		S/PDIF	UIS_SP_STATUS
	bit[5:2]	reserved			
	bit[1]	Data Mode 0 1	PCM compressed audio data		
	bit[0]	S/PDIF Cop 0 1	y Active inactive active		
D0:1FFF	Version N	umber		All	UIS_VERSION
	Returns the	e version num	ber of the ROM-code as ASCII		

3.6.2. Control Interface for Decoding Operation

The following table gives the writable memory addresses of the control interface for the decoding firmware.

Table 3–7: Configuration memory cells

Memory Address (hex)	Function		Μ	lode	Reset Value (hex)	Name
D0:13D0	I/O Contro	I			00000	UIC_IO_CONTRO L
	Soft Mute			All		
	bit[15]	Soft Mute 0 1	Soft mute off Soft mute on			
	This switch	is provided f	or user-controlled fast audio mute.			
	CRC Chec	k	Dolby Dig MF	gital PEG		
	bit[14]	CRC1 0 1	CRC1 on CRC1 off			
	bit[13]	CRC2 0 1	CRC2 on CRC2 off			
	remaining 2 checks are tion of an e channel), it both CRC-	ects the head 2/5 of the data enabled which error. Howeve t may be adva checks off. In	er and 3/5 of the data, CRC2 protects t a. It is recommended that both AC-3 CF ch yields to an automatic mute upon de r, under special operating conditions (no intageous to turn one (preferably CRC2 this case, it is important to decrease the thearing injuries and damages to the e	RC- etec- oisy 2) or ne lis-		
			s applied. It is recommended to enable gital noise in case of deranged or unreli			
	S/PDIF Ch	annel Select	S/P	DIF		
	bit[12:10]	000	S/PDIF channel select Channel 0			
		 111	Channel 7			
		ent is shown i	p to eight channels of compressed aud n the S/PDIF-Pc-preambles	lio.		

Memory Address (hex)	Function		Мос	e Reset Value (hex)	Name
D0:13D0	Input and I	Mode Selecti	ion A	00000	UIC_IO_CONTRO
	bit[9]	0 1	S/PDIF or I ² S Input Select S/PDIF input I ² S input		
	bit[8]	0 1	I ² S input select I ² S input at SID (word mode) Continuos data stream at SID (SII connected to ground)		
	bit[7:6]	00 01 10 11	Input data type Auto-detection AC-3 (Dolby Digital) MPEG Layer-2 PCM		
	Output Inte	erface Mode	А	1	
	bit[1]	0 1	I^2S output channels 8 × 1 channels 4 × 2 channels The clock and word strobe outputs SOC and SOI apply to all 4 data outputs SODSOD3		
	bit[0]	0 1	I ² S output mode Sony Mode Philips Mode		
D0:13D1	Noise Gen (Sec. 4.10.2		A gital Licensee Information Manual Issue 3		UIC_NOISE
	bit[7]	0 1	Noise generator off Noise generator on		
	bit[6]	0 1	Noise type White noise Band-pass shaped noise		
	bit[5:0]	000001 000010 000100 001000 010000 100000 000000	L C R LS RS LFE No channel selected		
	put noise. T pass filtere	The noise type d with a maxi	priate bits, more than one channel can ou e can be selected between white and ban mum between 500 and 1000 Hz. The s have to be initiated by the controller.		
D0:13D2		annel Delay 1 of Dolby Dig	Dolby Digita gital Licensee Information Manual Issue 3		UIC_C_DELAY
	bit [2:0]	000	0 ms		
		 101	5 ms		

Table 3–7: Configuration memory cells

Memory Address (hex)	Function	Mode	Reset Value (hex)	Name
D0:13D3	Left Surround Chanr (Sec. 4.10.1 of Dolby	el DelayDolby DigitalDigital Licensee Information Manual Issue 3)	00001	UIC_SL_DELAY
	bit[3:0] 0000	0 ms		
	1111	15 ms		
	The surround delay for in the DPL 4519G.	Dolby Pro Logic decoded signals must be set		
D0:13D4	Right Surround Char (Sec. 4.10.1 of Dolby	Digital Delay Dolby Digital Digital Licensee Information Manual Issue 3)	00000	UIC_SR_DELAY
	bit[3:0] 0000	0 ms		
	 1111	15 ms		
	The surround delay for in the DPL 4519G.	Dolby Pro Logic decoded signals must be set		
D0:13D5	LFE Channel Enable	Dolby Digital	00001	UIC_OUT_LFE
	bit[0] 1 0	Route LFE Channel to subwoofer output (if it exists in stream) enable LFE disable LFE		
		is assembled from the LFE and the other n the Output Configuration. This switch dis- ning from the LFE.		

Table 3-7: Configuration memo	ry cells
-------------------------------	----------

Memory Address (hex)	Function Mode	Reset Value (hex)	Name
D0:13D6	Output Mode Control (Downmixing)Dolby Digital(Section7.8 of ATSC Spec. A/52)	00007	UIC_OUT_MODE_ CONTROL
	bit[5:4] Dual mono setting of Dolby C decoder, applicable only if Audio Coding Mode is dual mono (acmod = 0). The actual mixing depends on the number of available output channels (speakers). 00 Stereo (straight output of both channels) 01 Left Mono (channel 1) 10 Right Mono (channel 2) 11 Mixed Mono (sum of both channels)		
	bit[2:0] Listening Mode Selector Defines the number of available (desired) output channels (loudspeakers). 000 2/0 L, R Dolby Surround compatible 001 1/0 C 010 2/0 L, R 011 3/0 L, C, R 100 2/1 L, R, S 101 3/1 L, C, R, S 101 3/1 L, C, R, S 110 2/2 L, R, SL, SR 111 3/2 L, C, R, SL, SR		
	These downmixing options are independent of the setting of the headphone output (D0:13DE).		
	Undesired channels can be muted by setting the volume to zero or by muting the outputs in the DPL 4519G or MSP 4450G, respec- tively.		
D0:13D7	Compression ControlDolby Digital(Operational Modes, Dialog Normalization)(Sec. 3.7 of Dolby Digital Licensee Information Manual Issue 3)	00001	UIC_ COMPRESSION_ CONTROL
	bit[1:0]Setting of Dolby C decoder00Custom Mode 0 (analog dialog normalization)01Custom Mode 1 (internal digital dialog normalization)10Line Mode11Compression RF out		
	The implemented dynamic range compression uses the transmitted variables dynrng, compr, and dialnorm. In Line Mode and in the Custom Modes, the dynamic compression may be scaled down by using the user-controlled high-level cut and low-level boost factors.		
	Note that in Custom Mode 0, the effect of dynrng must be imple- mented in the analog part of the audio equipment.		
	Note that in the Custom Mode downmix, an internal digital attenua- tion of 11 dB is applied that must be compensated externally.		

Table 3–7: Configuration memory cells

Memory Address (hex)	Function Mode	Reset Value (hex)	Name
D0:13D8	High-Level Cut Compression Scale FactorDolby Digital(Sec. 3.7 and Sec. 4.11.9 of Dolby Digital Licensee Information Manual Issue 3)Dolby Digital Licensee Information	7FFFF	UIC_CUT_X
	bit[19:0] 00000 _{hex} (full dynamic)7FFFF _{hex} (full compression)		
	This factor scales down potential attenuation (i.e. dynamic compres- sion) of loud portions of the audio as defined by dynrng. High-Level Cut is only used in Line Mode (except in downmix) and in the Cus- tom Modes.		
	Note: In order to prevent clipping due to the downmixing in the Custom and Line Modes, the High-Level Cut Compression Scale Factor must always be left at 7FFFF _{hex} when the two supplementary downmix outputs (D0:13DE) are used in conjunction with non-downmixed channels (D0:13D6). Please refer to section 4.5.8. of Dolby Digital Licensee Information Manual Issue 3		
D0:13D9	Low-Level Boost Compression Boost FactorDolby Digital(Sec. 3.7 and Sec. 4.11.9 of Dolby Digital Licensee InformationManual Issue 3)	7FFFF	UIC_BOOST_Y
	bit[19:0] 00000 _{hex} (full dynamic)7FFFF _{hex} (full compression)		
	This factor scales down potential amplification (i.e. dynamic com- pression) of weak portions of the audio as defined by dynrng. Low- Level Boost is only used in Line Mode and in the Custom Modes.		
D0:13DA	Bass ManagementAll(see chapter 2.9.10.3.;Sec. 4.7 of Dolby Digital Licensee Information Manual Issue 3)	00000	UIC_POST_ PROCESSING
	bit[4:0]0000Direct loop-through of all six channels without channel mixing1000Dolby Configuration 01001Dolby Configuration 11001Dolby Configuration 21010Dolby Configuration 21011Dolby Configuration 3 (No Subwoofer Out)1101Dolby Configuration 3 (Subwoofer Out)1101DVD Configuration (Bass to L/R)1111DVD Configuration (Bass to Subwoofer)		
	Note: If Bass Management is enabled, high processor clock must be selected (D0:13DF; bit16 = 1)		
	The LFE-content can be disabled in D0:13D5.		
	The output configurations can be used for all input formats. How- ever, for MPEG and PCM-dat, only the L and R input channels will carry information.		

Table 3-7: Configuration memory cells

Memory Address (hex)	Function			Mode	Reset Value (hex)	Name
D0:13DB	Sampling	Frequency		PCM at I ² S-Input	00000	UIC_SAMP_FREQ
	bit[1:0]	00 01 10	48 kHz 44.1 kHz 32 kHz			
		ing frequency at the I ² S-int		e controller in case of		
D0:13DD	Karaoke N	lode		Dolby Digital	00003	UIC_KARAOKE_
	bit[1:0]	00 01 10 11	no vocals vocal 1 vocal 2 vocal 1 (left) + vocal	2 (right)		MODE
D0:13DE	Lt/Rt and	Lo/Ro Stered	o Output	Dolby Digital (surround encoded)	00000	UIC_DOWNMIX_ MODE
	bit[0]	0 1	Lt/Rt stereo output Lo/Ro stereo output			
	For headpl the Lo/Ro-		n, the 2-channel outpu	ut can be switched to		
	tom and Li (D0:13D8)	ne Modes, the must always sed in conjune				

Table 3–7: Configuration memory cells

Memory Address (hex)	Function			Mode	Reset Value (hex)	Name
D0:13DF	Output Clo	ock Scaling		All	80004	UIC_OUT_CLK_
	bit[19]	0 1	CLKO off enable CLKO disable CLKO			SCALE
	bit[18:17]	0 1 2 3	Division factor applied to the intern reference clock (see Table 2–2 on page 9) for the CLKO-output divide reference clock by 1 divide by 2 divide by 4 divide by 8	al		
	bit[16]	0 1	Low/high system clock for Dolby D (please refer to Table 2–1 on page 61/56/40 MHz for 48/44.1/32 kHz 73/67/49 MHz for 48/44.1/32 kHz			
		encies are co	and the output clock at pin CLKO. ⁻ upled to the audio data sampling rat			
	Auxiliary I	nterface Cor	itrol	All		
	bit[6]	0 1	S/PDIF input select select SPDI input select SPDI2 input			
	bit[5]	0	reserved (set to 0)			
	bit[4]	0 1	Disable SDI input SDI on SDI off			
	bit[3]	0 1	Disable SDO output SDO on SDO off \rightarrow PIO [2:0]			
	bit[2]	0 1	SOC Impedance low impedance high impedance			
	bit[1]	0 1	Serial input select select SID, SII, SIC select SID*, SII*, SIC*			
	bit[0]	0	reserved			
	Input/outpu	it interface se	lections.			

Table 3-7: Configuration memory cells

Memory Address (hex)	Function			Mode	Reset Value (hex)	Name
D0:13E0	PCM/MPE	G Deempha	s is Control Deemphasis	MPEG/PCM	00000	UIC_DEEMPHASE _CONTROL
	51(1.0)	00	automatic detection (o S/PDIF and all MPEG phasis if PCM via I ² S-	-inputs, no deem-		
		01 10 11	50/15 µs deemphasis no deemphasis J17 deemphasis			
	ded deemp		a the serial interface do nation. The correct deem controller.			
	streams co	ontain such i	a the S/PDIF-interface a nformation. In this case, to achieve the correct de	the automatic detec-		
	Volume Co	ontrol		All		
D0:13E1 D0:13E2 D0:13E3 D0:13E4 D0:13E5 D0:13E6 D0:13E7 D0:13E8	Volume su Volume ce Volume su Volume ste		channel nnel nnel		07300 (all)	UIC_L_VOLUME UIC_R_VOLUME UIC_SL_VOLUME UIC_SR_VOLUME UIC_C_VOLUME UIC_LFE_VOLUM E UIC_L_ST_VOLUM
	bit[15:8]	7F _{hex} 73 _{hex}	+12 dB 0 dB			e UIC_R_ST_VOLU Me
		 01 _{hex} 00 _{hex}	–114 dB mute			
	The resolu	tion is 1 dB/s	step.			
D0:13EA	bit[15:0]		first 16 S/PDIF channel status bits (All output)	01904	UIC_CHANNEL _STATUS
	bit[15]		L-bit (generation statu	is)		
	bit[8:14]		category code			
	bit[6:7]		should be "0"			
	bit[3:5]		should be "0"			
	bit[2]		cp-bit (copyright prote	ction)		
	bit[1]		should be "0" for PCN	l output		
	bit[0]		should be "0" for cons	umer use		
	These bits	are inactive	if S/PDIF loop-through is	s selected.		
			e to set bits 2, 8 15 cor affect the ability to make			

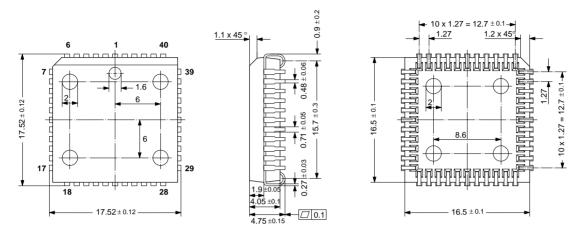

3.6.3. Hybrid User Interface Cells

Table 3–8:	Hybrid	User	Interface	Cells
------------	--------	------	-----------	-------

Memory Address (hex)	Function	Reset Value (hex)	Name
D0:13FF	Error Constants Messages bit[19:0] 0 no error 8 ail errors with an error number higher or equal to this error number cause a restart 9 LE_NO_SYNC_COPY 11 Data Stream Error (PA not correct) 12 Data Stream Error (PC not correct) 13 Data Stream Error (PD to big) 15 L2S timeout error 16 no input data type selected in 12S input mode (i.e. auto-detection is ON) → causes an error in the actual software version 17 input type over spdif changed from pcm to data 18 AC-3: initial waiting time out 20 AC-3: sync lost 21 AC-3: cRC1 wait timeout 22 AC-3: CRC2 wait timeout 23 AC-3: CRC2 wait timeout 24 AC-3: CRC2 wait imeout 25 AC-3: CRC2 wait imeout 26 selected bit-stream-number not available 27 PCM recognition inconsistent, restart 28 DATA TYPE in BurstInfo not AC-3, PCM, MPEG, or DTS. 29 AC-3: Sampling frequency changed 30 invalid exponents detected 41 MPEG snot enough data t	00000	UIH_LAST_ ERROR

4. Specifications

4.1. Outline Dimensions

SPGS704000-1(P44/K)/1E

Fig. 4–1: 44-Pin Plastic Leaded Chip Carrier Package (PLCC44K) Weight approximately 2.5 g Dimensions in mm

4.2. Pin Connections and Short Descriptions

- NC not connected, leave vacant
- LV If not used, leave vacant

- VDD connect to positive supply
- VSS connect to ground
- X obligatory, pin must be connected as described in application information

Pin No. PLCC 44-pin	Pin Name	Туре	Connection (if not used)	Short Description
1	VSS	SUPPLY	Х	Ground supply for digital parts
2	VDD	SUPPLY	Х	Positive supply for digital parts
3	I2CD	IN/OUT	VDD	I ² C data line
4	I2CC	IN/OUT	VDD	I ² C clock line
5	POR	IN	Х	Reset, active low
6	TE	IN	VSS	Test enable
7	AVSS	SUPPLY	Х	Ground supply for analog circuits
8	AVDD	SUPPLY	Х	Supply for analog circuits
9	ХТІ	IN	Х	Clock input/quartz oscillator pin 1
10	ХТО	OUT	LV	Quartz oscillator pin 2
11	NC		LV	
12	NC		LV	

Pin No. PLCC 44-pin	Pin Name	Туре	Connection (if not used)	Short Description
13	CLKO	OUT	LV	DSP clock output for the D/A-converter
14	SOD1	OUT	LV	Serial output data 1
15	SOD2	OUT	LV	Serial output data 2
16	SOD3	OUT	LV	Serial output data 3
17	SPDIFOUT	OUT	LV	S/PDIF output
18	PI4	IN/OUT	LV	PIO data [4]
19	SIC	IN	VSS	Serial input clock
20	SII	IN	VSS	Serial input frame identification
21	SID	IN	VSS	Serial input data
22	XVSS	SUPPLY	Х	Ground for output buffers
23	XVDD	SUPPLY	Х	Positive supply for output buffers
24	PI8	IN/OUT	LV	PIO data [8]
25	SOC	OUT	Х	Serial output clock
26	SOI	OUT	Х	Serial output frame identification
27	SOD	OUT	Х	Serial output data
28	PI12	IN/OUT	LV	PIO data [12]
29	PI13	IN/OUT	LV	PIO data [13]
30	SID* (PI14)	IN/OUT	LV	PIO data [14], SID* = alternative input for SID
31	SII* (PI15)	IN/OUT	LV	PIO data [15], SII* = alternative input for SII
32	SIC* (PI16)	IN/OUT	LV	PIO data[16], SIC* = alternative input for SIC
33	PI17	IN/OUT	LV	PIO data [17]
34	PI18	IN/OUT	LV	PIO data [18]
35	PI19	IN/OUT	LV	PIO data [19]
36	PCS	IN	VDD	PIO chip select, active low
37	PR	IN	VDD	PIO DMA request or Read/Write
38	SPDI	IN	VSS	S/PDIF input 1
39	SPREF	IN	LV	S/PDIF input (reference)
40	SPDI2	IN	VSS	S/PDIF input 2
41	RTW	OUT	LV	PIO ready to write, active low
42	RTR	OUT	LV	PIO ready to read, active low

OUT

OUT

IN

Pin No. PLCC 44-pin	Pin Name	Туре	Connection (if not used)	Short Description
43	EOD	OUT	LV	PIO end of DMA, active low
44	SYNC	OUT	LV	Reserved for frame synchronization

4.3. Pin Descriptions

4.3.1. Power Supply Pins

Connection of all power supply pins is mandatory for the functioning of the MAS 3528E.

VDD	SUPPLY
VSS	SUPPLY
The VDD/VSS pair is internally	connected with all digi-

The VDD/VSS pair is internally connected with all digital modules of the MAS 3528E.

XVDD	SUPPLY
XVSS	SUPPLY
The XV/DD/XV/SS pins are interna	ally connected with

the XVDD/XVSS pins are internally connected with the pin output buffers.

AVDD	SUPPLY
AVSS	SUPPLY

The AVDD/AVSS pair is connected internally with the analog blocks of the MAS 3528E, i.e. clock synthesizer and supply voltage supervision circuits.

4.3.2. Control Lines

I2CC	SCL	IN/OUT
I2CD	SDA	IN/OUT
Standard I ² C co	ontrol lines.	

4.3.3. Parallel Interface Lines

With the PR = 1 and the PCS = 0, the PIO interface is defined as output and displays some status information of the MPEG decoder. The PIO can be connected to an external controller or to a display unit (e.g. LED). The internal MPEG decoder firmware attaches specific functions to some of the PIO-pins.

PCS

The PIO chip select must be set to '0' to activate the PIO in operation mode.

PR

PR must be set to '1' to validate PIO data output from MAS 3528E.

RTR OUT RTR is not supported by the firmware. For detailed information, please refer to the MASC software development kit.

RTW

RTW is not supported by the firmware.

EOD

EOD is not supported by the firmware.

PI19	MSB	IN/OUT
PI18		IN/OUT
PI17		IN/OUT
PI16		IN/OUT
PI15		IN/OUT
PI14		IN/OUT
PI13		IN/OUT
PI12	LSB	IN/OUT
Data nin for i	narallel innut/output interfa	<u></u>

Data pin for parallel input/output interface.

4.3.4. Clocking

XTI IN This is the clock input of the MAS 3528E. The nominal clock frequency is 18.432 MHz.

хто

This connection is needed for the guartz oscillator.

CLKO

IN

IN

OUT The CLKO is an oversupplying clock that is synchronized to the digital audio data (SOD) and the frame identification (SOI).

4.3.5. Serial Input Interface

SID	IN
SII	IN
SIC	IN
Data, frame indication, and clock line of the standa	ard
I ² S (word mode) serial input interface.	

PI16	SIC*	IN
PI15	SII*	IN
PI14	SID*	IN

The SIC*, SID*, and SII* are alternative serial input lines. This interface can be selected in memory cell D0:13D0.

4.3.6. S/PDIF Input Interface

SPDI IN SPDI2 IN SPREF IN	I
Input lines (SPDI/SPDI2) and ground reference line (SPREF) of the S/PDIF-input interfaces. One of the two alternate input lines is selected by in D0:13DF.	
4.3.7. S/PDIF Output Interface	

SPDIFOUT	OUT
S/PDIF-output line.	

4.3.8. Serial Output Interface

SOD	OUT
SOD1	OUT
SOD2	OUT
SOD3	OUT
SOI	OUT
SOC	OUT

Data, frame indication, and clock line of the serial output interface. The SOI indicates whether the left or the right audio sample is transmitted. Besides the two modes, it is possible to reconfigure the interface.

4.3.9. Miscellaneous

POR

IN The POR pin is used to reset the digital parts of the MAS 3528E. POR is a low active signal.

TE

The TE pin is for production test only and must be connected with VSS in all applications.

IN

SYNC

The SYNC pin is set while decoding Dolby Digital or MPEG. Only during header processing, there is a short Low period (20...300 µs depending on the audio format)

4.4. Pin Configuration

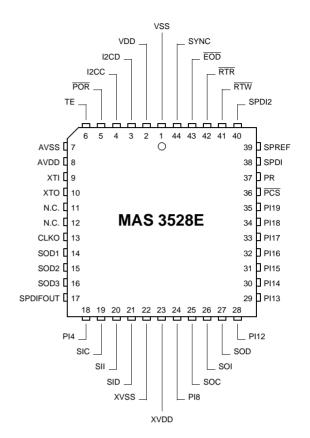


Fig. 4-2: 44-pin PLCC package

4.5. Internal Pin Circuits

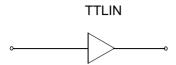


Fig. 4–3: Input pins PCS, PR

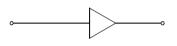


Fig. 4-4: Input pin TE

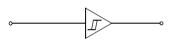


Fig. 4–5: Input pin POR

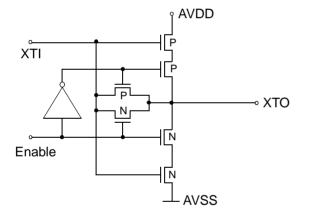


Fig. 4-6: Clock oscillator XTI, XTO

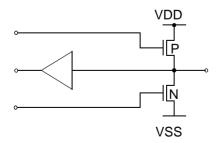


Fig. 4–7: Input/Output pins SOD1, SOD2, SOD3, SPDIFOUT, PI4, PI8, SOC, SOI, SOD, PI12...PI19

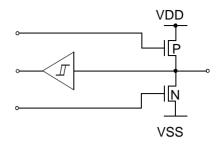


Fig. 4-8: Input/Output pins SIC, SII, SID

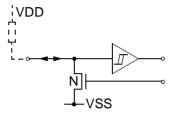


Fig. 4-9: Input/Output pins I2CC, I2CD

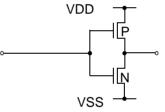
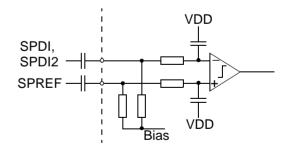



Fig. 4–10: Output pins RTW, EOD, RTR, CLKO, SYNC

4.6. Electrical Characteristics

4.6.1. Absolute Maximum Ratings

Symbol	Parameter	Pin Name	Min.	Max.	Unit
T _A	Ambient Operating Temperature		-20	70	°C
Τ _S	Storage Temperature		-40	125	°C
P _{TOT}	Package Power Dissipation (PLCC44K)	VDD, XVDD, AVDD		1250	mW
V _{SUPD}	Digital Supply Voltage	VDD, XVDD	-0.3	6.0	V
V _{SUPA}	Analog Supply Voltage	AVDD	-0.3	6.0	V
ΔV _{SUP}	Voltage differences between any supply region (VDD, AVDD, XVDD)	VDD, AVDD, XVDD	-0.5	0.5	V
V _{Idig}	Input Voltage, all Digital Inputs		-0.3	V _{SUP} +0.3	V
I _{ldig}	Input Current, all Digital Inputs		-20	20	mA
Out	Current, all Digital Outputs			250	mA
	Output Load			300	pF

Stresses beyond those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions/Characteristics" of this specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

4.6.2. Recommended Operating Conditions (T_A = 0 to +70 °C)

4.6.2.1. General Recommended Operating Conditions

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit
V _{SUPD}	Digital supply voltage	VDD, XVDD	4.75	5.0	5.25	V
V _{SUPA}	Analog supply voltage	AVDD	4.75	5.0	5.25	V

4.6.2.2. Reference Frequency Generation and Crystal Recommendations

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	
External Clock Input Recommendations							
CLK _F	Clock frequency	ХТІ		18.432		MHz	
CLK _{Amp}	Clock amplitude		0.7		3.5	V _{pp}	
Crystal Reco	mmendations						
T _{AC}	Ambient temperature range	ΧΤΙ, ΧΤΟ	-20		80	°C	
f _P	Load resonance frequency at C _I = 12 pF			18.432		MHz	
∆f/f _S	Accuracy of frequency adjust- ment		-50		50	ppm	
∆f/f _S	Frequency variation vs. temper- ature		-50		50	ppm	
R _{EQ}	Equivalent series resistance			12	30	Ω	
C ₀	Shunt (parallel) capacitance			3	7	pF	

4.6.2.3. Input Levels at V_{DD} = 4.5 V...5.5 V

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit
V _{IL}	Input low voltage	POR			0.5	V
V _{IH}	Input high voltage	I2CC, I2CD	2.6			V
V _{ILD}	Input low voltage	PI <i>,</i>			0.5	V
V _{IHD}	Input high voltage	SII, SIC, SID, PR, TE,	V _{SUP} × 0.5			

4.6.3. Characteristics at $T_A = 0$ to 70 °C, $V_{DD} = 5.0$ V, $f_{Crystal} = 18.432$ MHz

4.6.3.1. General Characteristics

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
Supply Cu	rrent						
I _{SUP}	Current consumption	all supply pins		210		mA	5.0 V, audio sampling frequency 48 kHz Dolby Digital, 61 MHz fproc
Digital Outputs and Inputs							
O _{DigL}	Output low voltage	PI <i>,</i>			0.3	V	at I _{load} = 1 mA
O _{DigH}	Output high voltage	SOI, SOD, SOD1, SOD2, SOD3, EOD, RTR, RTW, CLKO SPDIF-OUT	V _{SUP} -0.3			V	at I _{load} = 1 mA
C _{Digl}	Input capacitance	all			7	pF	
I _{DLeak}	Input leakage current	digital Inputs		1		μA	0 V < V _{pin} < V _{SUP}

4.6.3.2. I²C Characteristics

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
R _{ON}	Output resistance	I2CC, I2CD			60	Ω	$I_{load} = 5 \text{ mA},$ $V_{DD} = 4.5 \text{ V}$
f _{I2C}	I ² C bus frequency	I2CC			400	kHz	
t _{I2C1}	I ² C START condition setup time	I2CC, I2CD	300			ns	
t _{I2C2}	I ² C STOP condition setup time	I2CC, I2CD	300			ns	
t _{I2C3}	I ² C clock low pulse time	I2CC	1250			ns	
t _{I2C4}	I ² C clock high pulse time	I2CC	1250			ns	
t _{I2C5}	I ² C data hold time before rising edge of clock	I2CC	80			ns	
t _{I2C6}	I ² C data hold time after falling edge of clock	I2CC	80			ns	
V _{I2COL}	I ² C output low voltage	I2CC, I2CD			0.3	V	I _{LOAD} = 5 mA
I _{I2COH}	I ² C output high leakage current	I2CC, I2CD			1	μA	V _{I2CH} = 5.5 V
t _{I2COL1}	I ² C data output hold time after falling edge of clock	I2CC, I2CD	20			ns	
t _{I2COL2}	I ² C data output setup time before rising edge of clock	I2CC, I2CD	250			ns	f _{I2C} = 400kHz

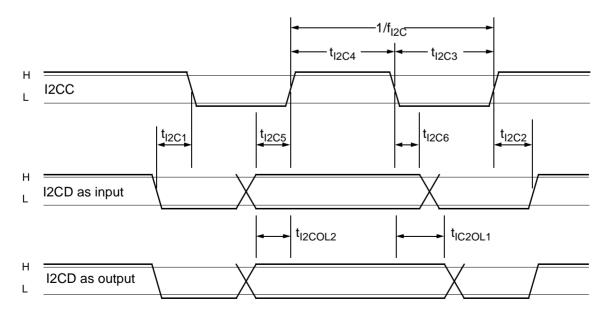


Fig. 4–12: I²C timing diagram

4.6.3.3. S/PDIF-Bus Input (Characteristics
-----------------------------	-----------------

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _S	Signal amplitude	SPDI, SPDI2,	200	500	1000	mV _{pp}	
f _{s1}	Biphase frequency	SPDI, SPDI2		3.072		MHz	±1000 ppm, f _s = 48 kHz
f _{s2}	Biphase frequency	SPDI, SPDI2		2.822		MHz	±1000 ppm, f _s = 44.1 kHz
f _{s3}	Biphase frequency	SPDI, SPDI2		2.048		MHz	\pm 1000 ppm, f _s = 32 kHz
t _p	Biphase period	SPDI, SPDI2		326		ns	at f _s = 48 kHz, (highest sampling rate)
t _r	Rise time	SPDI, SPDI2	0		65	ns	at f _s = 48 kHz, (highest sampling rate)
t _f	Fall time	SPDI, SPDI2	0		65	ns	at f _s = 48 kHz, (highest sampling rate)
	Duty-cycle	SPDI, SPDI2	40	50	60	%	at "1" and $f_s = 48 \text{ kHz}$

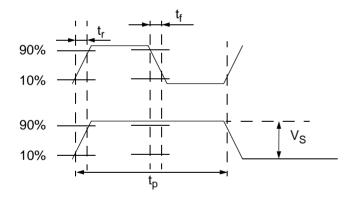


Fig. 4-13: Timing of the S/PDIF-input

4.6.3.4. S/PDIF-Bus Output Characteristics

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
f _{s1}	Biphase frequency	SPDIFOUT		3.072		MHz	f _s = 48 kHz
f _{s2}	Biphase frequency	SPDIFOUT		2.822		MHz	f _s = 44.1 kHz
f _{s3}	Biphase frequency	SPDIFOUT		2.048		MHz	f _s = 32 kHz
t _p	Biphase period	SPDIFOUT		326		ns	at f _s = 48 kHz, (highest sampling rate)
t _r	Rise time	SPDIFOUT	0		2	ns	C _{load} = 10 pF
t _f	Fall time	SPDIFOUT	0		2	ns	C _{load} = 10 pF
	Duty-cycle	SPDIFOUT		50		%	at "1" and f _s = 48 kHz

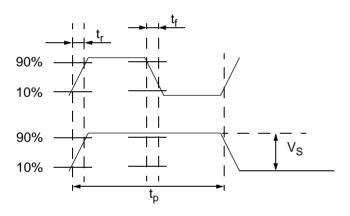
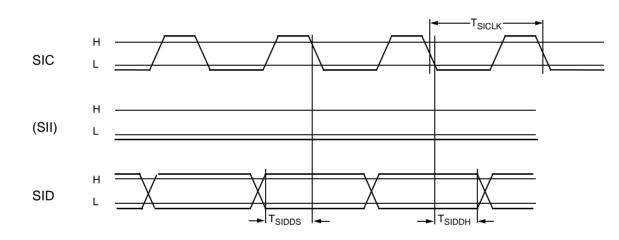
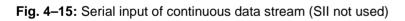




Fig. 4-14: Timing of the S/PDIF-output

4.6.3.5. I²S Bus Characteristics – Input

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
t _{SICLK}	t _{SICLK} I ² S clock input clock period		960			ns	Burst mode, mean data rate < 150 kbit/s
t _{SIDDS}	I ² S data setup time before falling edge of clock	SIC, SID	50		t _{SICLK} −100	ns	
t _{SIDDH}	I ² S data hold time	SIC, SID	50			ns	
t _{SIIDS}	I ² S word strobe setup time before falling(/rising) edge of clock	SIC, SII	50		t _{SICLK} –100	ns	
t _{SIIDH}	I ² S word strobe hold time	SIC, SII	50			ns	
t _{bw}	Burst wait time	SIC, SID	480			ns	

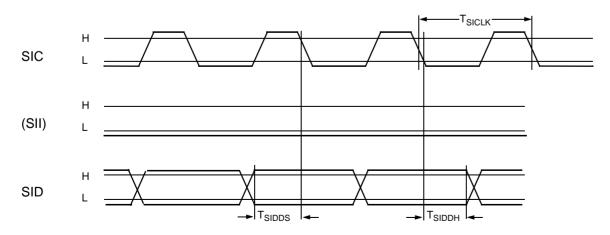


Fig. 4–16: Serial input of I²S-signal

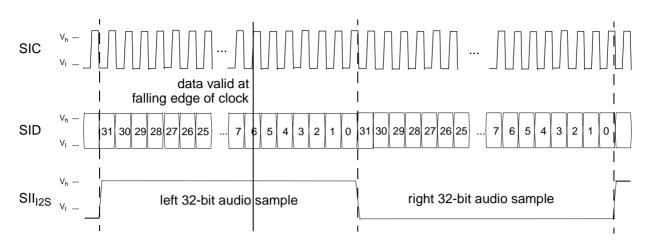


Fig. 4–17: Schematic timing of the serial audio input (I²S). For the continuous data input mode, SII must be held low and data values are latched at falling clock edges.

4.6.3.6. I²S Characteristics – Output

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
t _{SCLKO}	I ² S clock output frequency	SOC		325		ns	48 kHz sample rate 2×32 bits/sample
t _{SOISS}	I ² S word strobe hold time after falling edge of clock	SOC, SOI	10		t _{SCLKO} /2	ns	
t _{SOODC}	I ² S data hold time after falling edge of clock	SOC, SOD	10		t _{SCLKO} /2	ns	

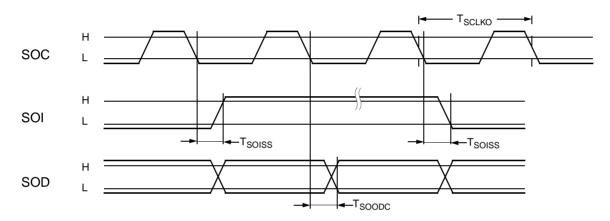


Fig. 4–18: I²S-output

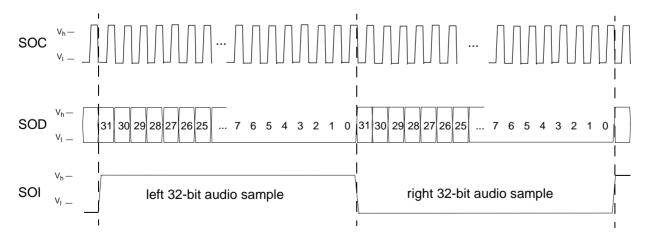


Fig. 4-19: Schematic timing of the SDO interface in 32 bit/sample mode

4.6.4. Firmware Characteristics

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
Synchronization Times for Dolby Digital Mode							
t _{DDsync} Synchronization on Dolby Digital Bit Streams				140		ms	f _s = 48 kHz, AC-3
Synchronization Times for MPEG-Mode							
t _{mpgsync}	t _{mpgsync} Synchronization on MPEG Bit Streams			120	48	ms	f _s = 48 kHz, MPEG
Ranges							
PLLRange Tracking range of sampling clock recovery PLL			-200		200	ppm	

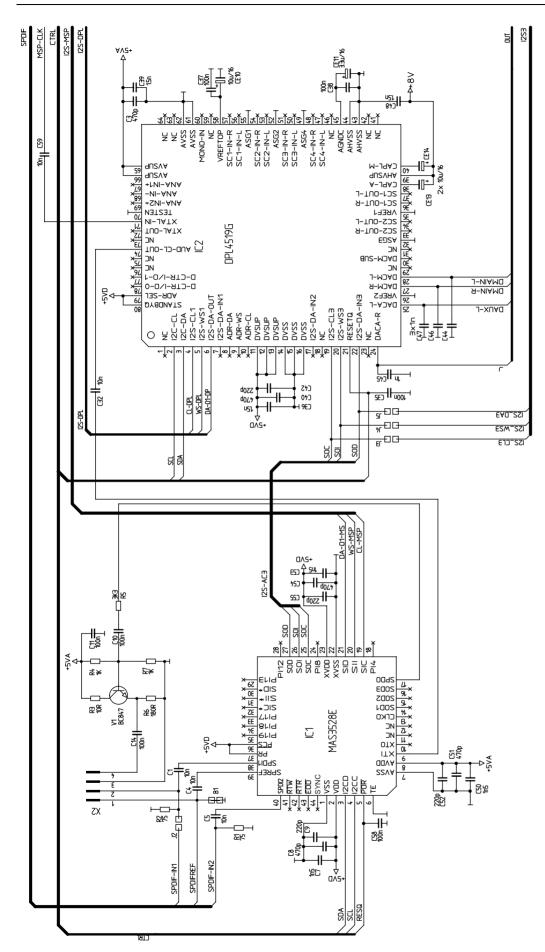


Fig. 4-20: Part 1 of the application circuit diagram. For details, please refer to the MAS 3528E application kit.

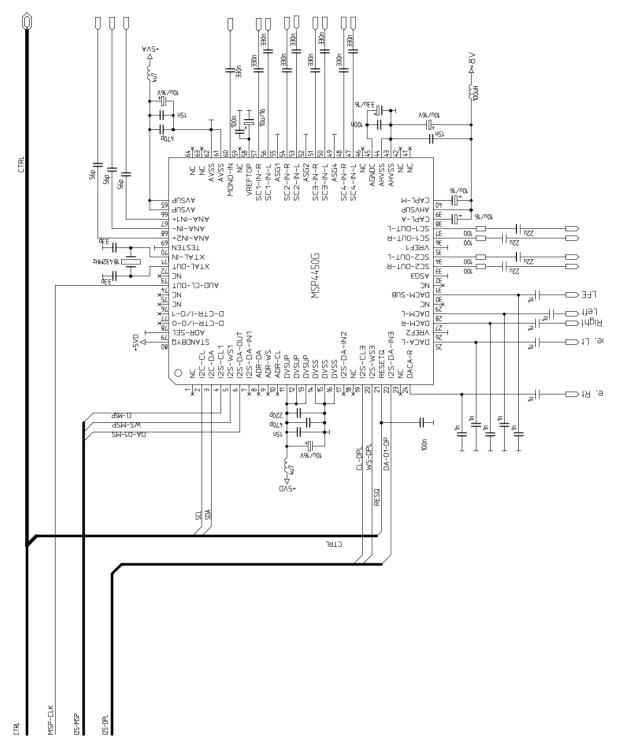


Fig. 4-21: Part 2 of the application circuit diagram. For details, please refer to the MAS 3528E application kit.

5. Data Sheet History

1. Advance Information: "MAS 3528E Dolby Digital and MPEG-1 Layer-2 Audio Decoder", June 28, 2000, 6251-509-1AI. First release of the advance information.

Micronas GmbH Hans-Bunte-Strasse 19 D-79108 Freiburg (Germany) P.O. Box 840 D-79008 Freiburg (Germany) Tel. +49-761-517-0 Fax +49-761-517-2174 E-mail: docservice@micronas.com Internet: www.micronas.com

Printed in Germany Order No. 6251-509-1AI All information and data contained in this data sheet are without any commitment, are not to be considered as an offer for conclusion of a contract, nor shall they be construed as to create any liability. Any new issue of this data sheet invalidates previous issues. Product availability and delivery are exclusively subject to our respective order confirmation form; the same applies to orders based on development samples delivered. By this publication, Micronas GmbH does not assume responsibility for patent infringements or other rights of third parties which may result from its use.

Further, Micronas GmbH reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of Micronas GmbH.

Advance Information Supplement

Subject:	Data Sheet Errata for MAS 3528E
Data Sheet Concerned:	MAS 3528E 6251-509-1AI, Edition June 28, 2000
Supplement:	No. 1/ 6251-509-1AIS
Edition:	Dec. 20, 2000

Data Sheet Errata MAS 3528E (for Advance Information: Edition June 28, 2000; 6251-509-1AI)

The definition of the following sections and registers is missing or incorrect; section, table and figure numbers correspond to the data sheet.

2.7.5. Frame Synchronization

For microprocessor interrupts, a frame synchronization output pin (SYNC) is provided.

After decoding a valid header, the SYNC pin level changes to High. Most of the status information (UIS cells in Table 3–6 on page 24) is updated now. To generate an edge for the controller, the level changes to Low during processing the next header. After having completed this, the SYNC pin level changes to High again. If the level is Low for more than 1 ms, no decoding is performed. Memory cell UIH_LAST_MESSAGE (D0:13FF) provides background information thereof.

2.9.6. PCM Audio Data

PCM-data are received via S/PDIF or I²S. Sampling frequency will be detected automatically and mirrored in D0:13A0 (UIS_FS_CODE).

If the PCM-data are received via I²S-bus the MAS 3528E expects a valid wordstrobe, and I/O-control (D0:13D0) has to be set as described in table 3-7. In this case the deemphase must be activated by controller if necessary.

2.9.10.1. Extra Stereo Output

For headphone and VCR-recordings, an extra stereo output is provided that may be switched from Lt/Rt (surround encoded, default) to Lo/Ro (headphone encoded) [®].

Both, the 6-channel output and the stereo signal[®] are routed to the serial data output interface ⑦.

Note: The stereo output is a downmix of the 6-channel output. So the stereo downmix will work properly only, if Output Mode (D0:13D6) (which effects the Dolby Downmix of the 6 channels) is in its default state (3/2-no downmix).

Table 3–6: Status memory cells

	Memory Address (hex)	Function			Mode	Name
	D0:13A0	-		ut bitstream Spec. A/52)	Dolby Digital MPEG PCM	UIS_FSCOD
I		bit[1:0]	00 01 10 11	48 kHz 44.1 kHz 32 kHz not detected (default)		

Table 3–7: Configuration memory cells

Memory Address (hex)	FunctionMode		Reset Value (hex)	Name
D0:13D0	Input and Mod	e Selection A	II 00000	UIC_IO_CONTROL
	bit[9] 0 1	S/PDIF or I ² S Input Select S/PDIF input I ² S input		
	bit[8] 0 1	I ² S input select I ² S input at SID (word mode) Continuos data stream at SID (SII connected to ground)		
	bit[7:6] 00 01 10 11	AC-3 (Dolby Digital)		
	Output Interfac	ce Mode A	п	
	bit[5] 0 1	default I ² S output mode: invert wordstrobe		
	bit[1] 0 1	I^2S output channels 8 × 1 channels 4 × 2 channels The clock and word strobe outputs SOC and SOI apply to all 4 data outputs SODSOD3		
	bit[0] 0 1	I ² S output mode no delay (as used in Sony Mode) delay of data related to wordstrobe slope (as used in Philips Mode)	9	

Table 3-7: Configuration memory cells

	Memory Address (hex)	FunctionMode	Reset Value (hex)	Name
I	D0:13D6	Output Mode Control (Dolby Downmix) (Section7.8 of ATSC Spec. A/52)Dolby Digits	I 00007	UIC_OUT_MODE_ CONTROL
Ι		bit[4:3] Dual mono setting of Dolby C decoder, applicable only if Audio Coding Mode is dual mono (acmod = 0). The actual mixing depends on the number of available output channels (speakers). 00 Stereo (straight output of both channels 01 Left Mono (channel 1) 10 Right Mono (channel 2) 11 Mixed Mono (sum of both channels)		
		bit[2:0]Listening Mode Selector Defines the number of available (desired output channels (loudspeakers).0002/0L, R Dolby Surround compatible 0010011/0C0102/0L, R0113/0L, C, R1002/1L, R, S1013/1L, C, R, S1012/2L, R, SL, SR1113/2L, C, R, SL, SRThese downmixing options are independent of the setting of the stereo output (D0:13DE).But only in default setting (Mode 2/3) the two stereo output (can be seen as an extra downmix) is done properly.Undesired channels can be muted by setting the volume to zero of by muting the outputs in the DPL 4519G or MSP 4450G, respectively.Only listening modes 1/0, 2/0, and 3/0 should be used if dual more is selected.	e r	
•	D0:13DB	not longer required: do not write on this memory address		
	D0:13E1 D0:13E2 D0:13E3 D0:13E4 D0:13E5 D0:13E6 D0:13E7 D0:13E8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	II 07300 (all)	UIC_L_VOLUME UIC_R_VOLUME UIC_SL_VOLUME UIC_SR_VOLUME UIC_C_VOLUME UIC_LFE_VOLUME UIC_L_ST_VOLUME UIC_R_ST_VOLUME
		The resolution is 1 dB/step.		

Table 3-8: Hybrid User Interface Cells

Memory Function Address (hex)	Reset Value (hex)	Name
D0:13FF Message Constants All Messages bit[19:0] 0 no error 8 all errors with an error number higher or equal to this error number cause a restart 9 9 S/PDIF: sync lost during look for PA, PB, PC, PD 10 10 S/PDIF: sync lost during operation 11 11 Data Stream Error (PA not correct) 12 13 Data Stream Error (PD to big) 15 15 L2S timeout error 16 16 no input data type selected in 12S input mode (i.e. auto-detection is ON) 17 17 input type over spdif changed from pcm to data 18 18 AC-3: synce waiting time out 20 20 AC-3: synce lost 21 21 AC-3: CRC1 wait timeout 23 22 AC-3: CRC2 fail 26 24 AC-3: CRC2 fail 26 25 AC-3: CRC2 fail 26 26 selected bit-stream-number not available 27 PCM recognition inconsistent, restart 28 DATA TYPE in Burstinfo not AC-3, PCM, MPEG, or DTS. 29 AC-3: CRD1 buifferoverrun <th>00000</th> <th>UIH_LAST_ MESSAGE</th>	00000	UIH_LAST_ MESSAGE

Table 3-8: Hybrid User Interface Cells

Memory Address (hex)	Function	Reset Value (hex)	Name
D0:13FF (continued)	[50:66]User interface messages50LM_USER_CHANGE51LM_IO_CONTROL52LM_NOISE53LM_C_DELAY54LM_SL_DELAY55LM_RL_DELAY56LM_OUT_LFE57LM_COMPRESSION_CONTROL58LM_COT_X60LM_BOOST_Y61LM_OUT_CHANNELS62LM_OUT_CHANNELS64LM_OUT_CCK_SCALE70PCM: Sampling frequency changed in PCM Mode7he latest message that occurred is displayed in this cell. The controller should frequently (e.g. once per frame) check this memory location.After reading the message it is recommended to clear this cell (by writing a "0") to see whether this message occures again.	00000	UIH_LAST_ MESSAGE

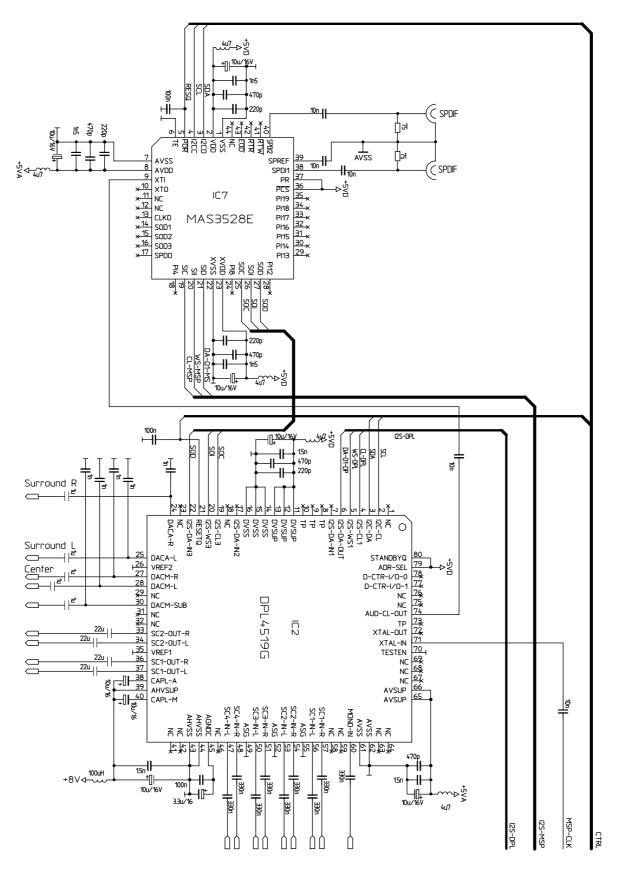


Fig. 4–20: Part 1 of the application circuit diagram. For details, please refer to the Multichannel Audio application kit.

MAS 3528E

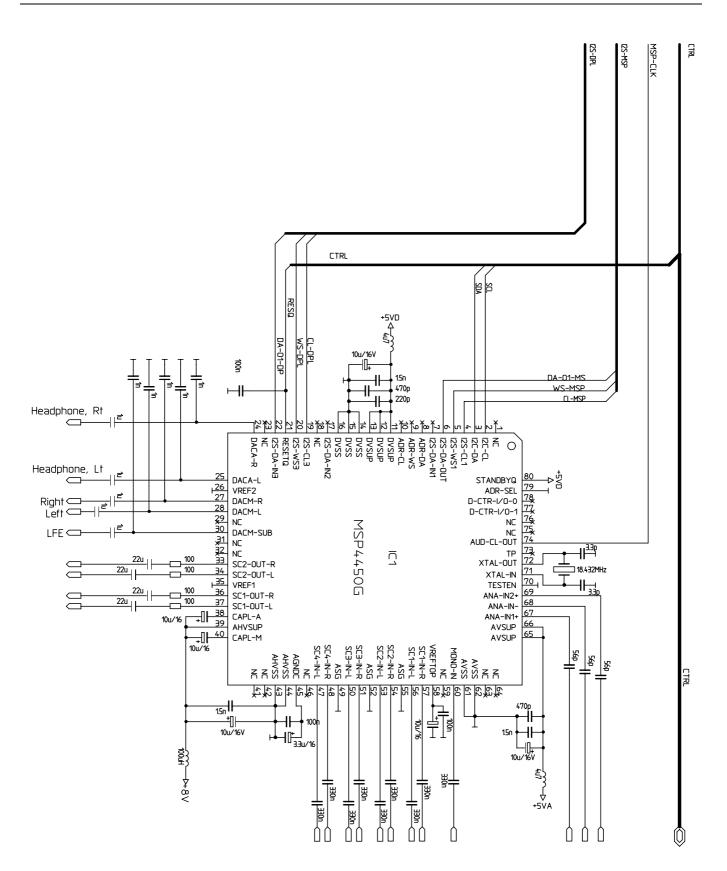


Fig. 4-21: Part 2 of the application circuit diagram. For details, please refer to the Multichannel Audio application kit.